13 resultados para Symmetric matrices
em Universidad Politécnica de Madrid
Resumo:
Gamma detectors based on monolithic scintillator blocks coupled to APDs matrices have proved to be a good alternative to pixelated ones for PET scanners. They provide comparable spatial resolution, improve the sensitivity and make easier the mechanical design of the system. In this study we evaluate by means of Geant4-based simulations the possibility of replacing the APDs by SiPMs. Several commercial matrices of light sensors coupled to LYSO:Ce monolithic blocks have been simulated and compared. Regarding the spatial resolution and linearity of the detector, SiPMs with high photo detection efficiency could become an advantageous replacement for the APDs
Resumo:
La tesis MEDIDAS AUTOSEMEJANTES EN EL PLANO, MOMENTOS Y MATRICES DE HESSENBERG se enmarca entre las áreas de la teoría geométrica de la medida, la teoría de polinomios ortogonales y la teoría de operadores. La memoria aborda el estudio de medidas con soporte acotado en el plano complejo vistas con la óptica de las matrices infinitas de momentos y de Hessenberg asociadas a estas medidas que en la teoría de los polinomios ortogonales las representan. En particular se centra en el estudio de las medidas autosemejantes que son las medidas de equilibrio definidas por un sistema de funciones iteradas (SFI). Los conjuntos autosemejantes son conjuntos que tienen la propiedad geométrica de descomponerse en unión de piezas semejantes al conjunto total. Estas piezas pueden solaparse o no, cuando el solapamiento es pequeño la teoría de Hutchinson [Hut81] funciona bien, pero cuando no existen restricciones falla. El problema del solapamiento consiste en controlar la medida de este solapamiento. Un ejemplo de la complejidad de este problema se plantea con las convoluciones infinitas de distribuciones de Bernoulli, que han resultado ser un ejemplo de medidas autosemejantes en el caso real. En 1935 Jessen y A. Wintner [JW35] ya se planteaba este problema, lejos de ser sencillo ha sido estudiado durante más de setenta y cinco años y siguen sin resolverse las principales cuestiones planteadas ya por A. Garsia [Gar62] en 1962. El interés que ha despertado este problema así como la complejidad del mismo está demostrado por las numerosas publicaciones que abordan cuestiones relacionadas con este problema ver por ejemplo [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05],[JKS07] [JKS11]. En el primer capítulo comenzamos introduciendo con detalle las medidas autosemejante en el plano complejo y los sistemas de funciones iteradas, así como los conceptos de la teoría de la medida necesarios para describirlos. A continuación se introducen las herramientas necesarias de teoría de polinomios ortogonales, matrices infinitas y operadores que se van a usar. En el segundo y tercer capítulo trasladamos las propiedades geométricas de las medidas autosemejantes a las matrices de momentos y de Hessenberg, respectivamente. A partir de estos resultados se describen algoritmos para calcular estas matrices a partir del SFI correspondiente. Concretamente, se obtienen fórmulas explícitas y algoritmos de aproximación para los momentos y matrices de momentos de medidas fractales, a partir de un teorema del punto fijo para las matrices. Además utilizando técnicas de la teoría de operadores, se han extendido al plano complejo los resultados que G. Mantica [Ma00, Ma96] obtenía en el caso real. Este resultado es la base para definir un algoritmo estable de aproximación de la matriz de Hessenberg asociada a una medida fractal u obtener secciones finitas exactas de matrices Hessenberg asociadas a una suma de medidas. En el último capítulo, se consideran medidas, μ, más generales y se estudia el comportamiento asintótico de los autovalores de una matriz hermitiana de momentos y su impacto en las propiedades de la medida asociada. En el resultado central se demuestra que si los polinomios asociados son densos en L2(μ) entonces necesariamente el autovalor mínimo de las secciones finitas de la matriz de momentos de la medida tiende a cero. ABSTRACT The Thesis work “Self-similar Measures on the Plane, Moments and Hessenberg Matrices” is framed among the geometric measure theory, orthogonal polynomials and operator theory. The work studies measures with compact support on the complex plane from the point of view of the associated infinite moments and Hessenberg matrices representing them in the theory of orthogonal polynomials. More precisely, it concentrates on the study of the self-similar measures that are equilibrium measures in a iterated functions system. Self-similar sets have the geometric property of being decomposable in a union of similar pieces to the complete set. These pieces can overlap. If the overlapping is small, Hutchinson’s theory [Hut81] works well, however, when it has no restrictions, the theory does not hold. The overlapping problem consists in controlling the measure of the overlap. The complexity of this problem is exemplified in the infinite convolutions of Bernoulli’s distributions, that are an example of self-similar measures in the real case. As early as 1935 [JW35], Jessen and Wintner posed this problem, that far from being simple, has been studied during more than 75 years. The main cuestiones posed by Garsia in 1962 [Gar62] remain unsolved. The interest in this problem, together with its complexity, is demonstrated by the number of publications that over the years have dealt with it. See, for example, [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05], [JKS07] [JKS11]. In the first chapter, we will start with a detailed introduction to the self-similar measurements in the complex plane and to the iterated functions systems, also including the concepts of measure theory needed to describe them. Next, we introduce the necessary tools from orthogonal polynomials, infinite matrices and operators. In the second and third chapter we will translate the geometric properties of selfsimilar measures to the moments and Hessenberg matrices. From these results, we will describe algorithms to calculate these matrices from the corresponding iterated functions systems. To be precise, we obtain explicit formulas and approximation algorithms for the moments and moment matrices of fractal measures from a new fixed point theorem for matrices. Moreover, using techniques from operator theory, we extend to the complex plane the real case results obtained by Mantica [Ma00, Ma96]. This result is the base to define a stable algorithm that approximates the Hessenberg matrix associated to a fractal measure and obtains exact finite sections of Hessenberg matrices associated to a sum of measurements. In the last chapter, we consider more general measures, μ, and study the asymptotic behaviour of the eigenvalues of a hermitian matrix of moments, together with its impact on the properties of the associated measure. In the main result we demonstrate that, if the associated polynomials are dense in L2(μ), then necessarily follows that the minimum eigenvalue of the finite sections of the moments matrix goes to zero.
Resumo:
En este trabajo se presenta un método para el modelado de cadenas cinemáticas de robots que salva las dificultades asociadas a la elección de los sistemas de coordenadas y obtención de los parámetros de Denavit-Hartenberg. El método propuesto parte del conocimiento de la posición y orientación del extremo del robot en su configuración de reposo, para ir obteniendo en qué se transforman éstas tras los sucesivos movimientos de sus grados de libertad en secuencia descendente, desde el más alejado al más cercano a su base. Los movimientos son calculados en base a las Matrices de Desplazamiento, que permiten conocer en que se transforma un punto cuando éste es desplazado (trasladado o rotado) con respecto a un eje que no pasa por el origen. A diferencia del método de Denavit-Hartenberg, que precisa ubicar para cada eslabón el origen y las direcciones de los vectores directores de los sistemas de referencia asociados, el método basado en las Matrices de Desplazamiento precisa solo identificar el eje de cada articulación, lo que le hace más simple e intuitivo que aquel. La obtención de las Matrices de Desplazamiento y con ellas del Modelo Cinemático Directo a partir de los ejes de la articulación, puede hacerse mediante algunas simples operaciones, fácilmente programables.
Resumo:
Fano resonances (FRs) are produced when a discrete state is coupled with a continuum. In addition to fundamental scientific interests, FRs in plasmonic systems give rise to the so-called plasmon-induced transparency. In this work we have studied the evolution of dipole-dipole all-plasmonic FRs in symmetric multilayered nanoshells as the function of their geometrical parameters. We demonstrate that symmetry breaking is not mandatory for controlling the Fano resonance in such multilayered nanoshells. Generation of FRs in these symmetric nanostructures presents clear advantages over their asymmetric counterparts, as they are easier to fabricate and can be used in a wider range of technological applications.
Resumo:
Spherical symmetric refractive index distributions also known as Gradient Index lenses such as the Maxwell-Fish-Eye (MFE), the Luneburg or the Eaton lenses have always played an important role in Optics. The recent development of the technique called Transformation Optics has renewed the interest in these gradient index lenses. For instance, Perfect Imaging within the Wave Optics framework has recently been proved using the MFE distribution. We review here the design problem of these lenses, classify them in two groups (Luneburg moveable-limits and fixed-limits type), and establish a new design techniques for each type of problem.
Resumo:
We have studied the evolution of dipole–dipole all-plasmonic Fano resonances (FRs) in symmetric multilayered nanoshells as a function of their geometrical parameters. We demonstrate that symmetry breaking is not mandatory for controlling the Fano resonance in such multilayer structures. By carefully selecting the geometrical parameters, the position of the FR can be tuned between 600 and 950 nm and its intensity can be increased up to four fold with respect to the non-optimized structures. Generation of FRs in such symmetric nanostructures presents clear advantages over their asymmetric counterparts, as they are easier to fabricate and can be used in a wider range of technological applications.
Resumo:
The reinforcing effect of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles in two different polymer matrices, isotactic polypropylene (iPP) and polyphenylene sulfide (PPS), has been investigated by means of dynamic depth-sensing indentation. The hardness and elastic modulus enhancement upon filler addition is analyzed in terms of two main contributions: changes in the polymer matrix nanostructure and intrinsic properties of the filler including matrix-particle load transfer. It is found that the latter mainly determines the overall mechanical improvement, whereas the nanostructural changes induced in the polymer matrix only contribute to a minor extent. Important differences are suggested between the mechanisms of deformation in the two nanocomposites, resulting in a moderate mechanical enhancement in case of iPP (20% for a filler loading of 1%), and a remarkable hardness increase in case of PPS (60% for the same filler content). The nature of the polymer amorphous phase, whether in the glassy or rubbery state, seems to play here an important role. Finally, nanoindentation and dynamic mechanical analysis measurements are compared and discussed in terms of the different directionality of the stresses applied.
Resumo:
In this paper, a set of design parameters, such as the slopes of upstream and downstream faces of the dam, radius of the upper arch, width of the dam at the top level and height of the vertical upper part of the dam, are given as function of the valley characteristics when the dam is situated, such as its geometry and its geotechnical properties. These tables have been obtained using a regression of the design parameters of an arch-gravity dam with a minimum concrete volume, placed in a large number of valleys with different characteristics and properties. Elasticites for these design parameters are also discussed.
Resumo:
This paper discusses the torsional response of a scaled reinforced concrete frame structure subjected to several uniaxial shaking table tests. The tested structure is nominally symmetric in the direction of shaking and exhibits torsion attributable to non-uniform yielding of structural components and uncertainties in the building process. Asymmetric behavior is analyzed in terms of displacement, strain in reinforcing bars, energy dissipated at plastic hinges, and damage at section and frame levels. The results show that for low levels of seismic hazard, for which the structure is expected to perform basically within the elastic range, the accidental eccentricity is not a concern for the health of the structure, but it significantly increases the lateral displacement demand in the frames (about 30%) and this might cause significant damage to non-structural components. For high levels of seismic hazard the effects of accidental torsion become less important. These results underline the need to consider accidental eccentricity in evaluating the performance of a structure for very frequent or frequent earthquakes, and suggest that consideration of torsion may be neglected for performance levels associated with rare or very rare earthquakes.
Resumo:
In mixed stands, inter-specific competition can be lower than intra-specific competition when niche complementarity and/or facilitation between species prevail. These positive interactions can take place at belowground and/or aboveground levels. Belowground competition tends to be size symmetric while the aboveground competition is usually for light and almost always size-asymmetric. Interactions between forest tree species can be explored analyzing growth at tree level by comparing intra and inter-specific competition. At the same time, possible causes of niche complementarity can be inferred relating intra and inter-specific competition with the mode of competition, i.e. size-symmetric or sizeasymmetric. The aim of this paper is to further our understanding of the interactions between species and to detect possible causes of competition reduction in mixed stands of beech (Fagus sylvatica L.) with other species: pine?beech, oak?beech and fir?beech. To test whether species growth is better explained by size-symmetric and/or size-asymmetric competition, five different competition structures where included in basal area growth models fitted using data from the Spanish National Forest Inventory for the Pyrenees. These models considered either size-symmetry only (Reineke?s stand density index, SDI), size-asymmetry only (SDI of large trees or SDI of small trees), or both combined. In order to assess the influence of the admixture, these indices were introduced in two different ways, one of which was to consider that trees of all species compete in a similar way, and the other was to split the stand density indices into intra- and inter-specific competition components. The results showed that in pine?beech mixtures, there is a slightly negative effect of beech on pine basal area growth while beech benefitted from the admixture of Scots pine; this positive effect being greater as the proportion of pine trees in larger size classes increases. In oak?beech mixtures, beech growth was also positively influenced by the presence of oaks that were larger than the beech trees. The growth of oak, however, decreased when the proportion of beech in SDI increased, although the presence of beech in larger size classes promoted oak growth. Finally, in fir?beech mixtures, neither fir nor beech basal area growth were influenced by the presence of the other species. The results indicate that size-asymmetric is stronger than size-symmetric competition in these mixtures, highlighting the importance of light in competition. Positive species interactions in size-asymmetric competition involved a reduction of asymmetry in tree size-growth relationships.
Resumo:
Differential resultant formulas are defined, for a system $\cP$ of $n$ ordinary Laurent differential polynomials in $n-1$ differential variables. These are determinants of coefficient matrices of an extended system of polynomials obtained from $\cP$ through derivations and multiplications by Laurent monomials. To start, through derivations, a system $\ps(\cP)$ of $L$ polynomials in $L-1$ algebraic variables is obtained, which is non sparse in the order of derivation. This enables the use of existing formulas for the computation of algebraic resultants, of the multivariate sparse algebraic polynomials in $\ps(\cP)$, to obtain polynomials in the differential elimination ideal generated by $\cP$. The formulas obtained are multiples of the sparse differential resultant defined by Li, Yuan and Gao, and provide order and degree bounds in terms of mixed volumes in the generic case.
Resumo:
Esta tesis establece los fundamentos teóricos y diseña una colección abierta de clases C++ denominada VBF (Vector Boolean Functions) para analizar funciones booleanas vectoriales (funciones que asocian un vector booleano a otro vector booleano) desde una perspectiva criptográfica. Esta nueva implementación emplea la librería NTL de Victor Shoup, incorporando nuevos módulos que complementan a las funciones de NTL, adecuándolas para el análisis criptográfico. La clase fundamental que representa una función booleana vectorial se puede inicializar de manera muy flexible mediante diferentes estructuras de datas tales como la Tabla de verdad, la Representación de traza y la Forma algebraica normal entre otras. De esta manera VBF permite evaluar los criterios criptográficos más relevantes de los algoritmos de cifra en bloque y de stream, así como funciones hash: por ejemplo, proporciona la no-linealidad, la distancia lineal, el grado algebraico, las estructuras lineales, la distribución de frecuencias de los valores absolutos del espectro Walsh o del espectro de autocorrelación, entre otros criterios. Adicionalmente, VBF puede llevar a cabo operaciones entre funciones booleanas vectoriales tales como la comprobación de igualdad, la composición, la inversión, la suma, la suma directa, el bricklayering (aplicación paralela de funciones booleanas vectoriales como la empleada en el algoritmo de cifra Rijndael), y la adición de funciones coordenada. La tesis también muestra el empleo de la librería VBF en dos aplicaciones prácticas. Por un lado, se han analizado las características más relevantes de los sistemas de cifra en bloque. Por otro lado, combinando VBF con algoritmos de optimización, se han diseñado funciones booleanas cuyas propiedades criptográficas son las mejores conocidas hasta la fecha. ABSTRACT This thesis develops the theoretical foundations and designs an open collection of C++ classes, called VBF, designed for analyzing vector Boolean functions (functions that map a Boolean vector to another Boolean vector) from a cryptographic perspective. This new implementation uses the NTL library from Victor Shoup, adding new modules which complement the existing ones making VBF better suited for cryptography. The fundamental class representing a vector Boolean function can be initialized in a flexible way via several alternative types of data structures such as Truth Table, Trace Representation, Algebraic Normal Form (ANF) among others. This way, VBF allows the evaluation of the most relevant cryptographic criteria for block and stream ciphers as well as for hash functions: for instance, it provides the nonlinearity, the linearity distance, the algebraic degree, the linear structures, the frequency distribution of the absolute values of the Walsh Spectrum or the Autocorrelation Spectrum, among others. In addition, VBF can perform operations such as equality testing, composition, inversion, sum, direct sum, bricklayering (parallel application of vector Boolean functions as employed in Rijndael cipher), and adding coordinate functions of two vector Boolean functions. This thesis also illustrates the use of VBF in two practical applications. On the one hand, the most relevant properties of the existing block ciphers have been analysed. On the other hand, by combining VBF with optimization algorithms, new Boolean functions have been designed which have the best known cryptographic properties up-to-date.
Resumo:
The problem of channel estimation for multicarrier communications is addressed. We focus on systems employing the Discrete Cosine Transform Type-I (DCT1) even at both the transmitter and the receiver, presenting an algorithm which achieves an accurate estimation of symmetric channel filters using only a small number of training symbols. The solution is obtained by using either matrix inversion or compressed sensing algorithms. We provide the theoretical results which guarantee the validity of the proposed technique for the DCT1. Numerical simulations illustrate the good behaviour of the proposed algorithm.