4 resultados para Surfaces - Measurements

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall objective of this work is to provide diffuse illuminance availability at Madrid (Spain) through a statistical analysis of illuminance values corresponding to a long-term data series. The illuminance values are obtained from irradiance measurements by means of different empirical models for luminous efficacy. The values of diffuse illuminance on a horizontal and on vertical surfaces facing the four cardinal points are estimated and the different aspects related to daylight availability in an area with specific climatic conditions are analyzed. The experimental data consist of global and diffuse irradiance measurements on a horizontal surface provided by the National Meteorological Agency in Spain (AEMET) for Madrid. These data consist of hourly values measured in the period of 1980–2005. The statistical results derived correspond to a daylight typical year for the five surfaces considered. This information will be useful to building experts to estimate natural illumination availability when daylighting techniques are applied in building design with the main aim of electric energy savings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Embankments constructed on hillsides can have serious problems of stability, generally created by the action of water com-bined with the inclination of the hillside. In order to increase the stability or correct problems of instability already present, there are various methods that can be used: surface and deep drainage, reinforcements with anchored beams, medium and large diameter piles, etc. Standing out among these systems (for its versatility) is the use of micropiles which ?sew? the embankment to a non-unstable area of the hillside. This paper presents research undertaken by means of a finite element code for studying the effect and stress of the micropiles, comparing the results with real measurements taken in the south of Spain.