3 resultados para Suppression neuronale
em Universidad Politécnica de Madrid
Resumo:
Nanofabrication has allowed the development of new concepts such as magnetic logic and race-track memory, both of which are based on the displacement of magnetic domain walls on magnetic nanostripes. One of the issues that has to be solved before devices can meet the market demands is the stochastic behaviour of the domain wall movement in magnetic nanostripes. Here we show that the stochastic nature of the domain wall motion in permalloy nanostripes can be suppressed at very low fields (0.6-2.7 Oe). We also find different field regimes for this stochastic motion that match well with the domain wall propagation modes. The highest pinning probability is found around the precessional mode and, interestingly, it does not depend on the external field in this regime. These results constitute an experimental evidence of the intrinsic nature of the stochastic pinning of domain walls in soft magnetic nanostripes
Resumo:
This paper presents a reflection suppression technique for far field antenna measurements. The technique is based on a source reconstruction over a surface greater than the antenna itself. To be able to perform the reflection construction the next steps are required: the complete far field antenna pattern is obtained through interpolation of the acquired cuts, the currents are obtained through a holographic technique, the field out of the antenna area is filtered, and the pattern is reconstructed. The algorithm is used with measurements in the LEHA-UPM antenna measurement facilities and in the outdoor far field facility of LIT INPE in Brazil.
Resumo:
This paper presents the analysis of the reflections in two kind of spherical far field ranges: one if the classical acquisition where the AUT is rotated and the second one corresponds to the systems where the AUT is fixed and the antenna probe is rotated. In large far field systems this is not possible, but this can be used to the measurement of small antennas, for instance, with the SATIMO StarGate system. In both cases, it is assumed that only one frequency is acquired and the results should be improved cut by cut, in order not to lose the advantages or far field measurements. Finally, some practical results are studied using measurements of one antenna in the outdoor far field facility of LIT INPE in Brazil.