8 resultados para Study of timing by stop watch
em Universidad Politécnica de Madrid
Resumo:
This paper studies the energy consumption and subsequent CO2 emissions of road highway transportation under three toll systems in Spain for four categories of vehicles: cars, vans, buses and articulated trucks. The influence of toll systems is tested for a section of AP-41 highway between Toledo and Madrid. One system is free flow, other is traditional stop and go and the last toll system operates with an electronic toll collection (ETC) technology. Energy consumption and CO2 emissions were found to be closely related to vehicle mass, wind exposure, engine efficiency and acceleration rate. These parameters affect, directly or indirectly, the external forces which determine the energy consumption. Reducing the magnitude of these forces through an appropriate toll management is an important way of improving the energy performance of vehicles. The type of toll system used can have a major influence on the energy efficiency of highway transportation and therefore it is necessary to consider free flow.
Resumo:
Eutectic rods of Al2O3–Er3Al5O12 were grown by directional solidification using the laser-heated floating zone method at rates in the range 25–1500 mm/h. Their microstructure and mechanical properties (hardness, toughness and strength) were investigated as a function of the growth rate. A homogeneous and interpenetrated microstructure was found in most cases, and interphase spacing decreased with growth rate following the Hunt–Jackson law. Hardness increased slightly as the interphase spacing decreased while toughness was low and independent of the microstructure. The rods presented very high bending strength as a result of the homogeneous microstructure, and their strength increased rapidly as the interphase spacing decreased, reaching a maximum of 2.7 GPa for the rods grown at 750 mm/h. The bending strength remained constant up to 1300 K and decreased above this temperature. The relationship between the microstructure and the mechanical properties was established from the analysis of the microstructure and of the fracture mechanisms
Resumo:
Mechanical stability of EWT solar cells deteriorates when holes are created in the wafer. Nevertheless, the chemical etching after the hole generation process improves the mechanical strength by removing part of the damage produced in the drilling process. Several sets of wafers with alkaline baths of different duration have been prepared. The mechanical strength has been measured by the ring on ring bending test and the failure stresses have been obtained through a FE simulation of the test. This paper shows the comparison of these groups of wafers in order to obtain an optimum value of the decreased thickness produced by the chemical etching
Resumo:
Auxetic materials (or metamaterials) are those with a negative Poisson ratio (NPR) and display the unexpected property of lateral expansion when stretched, as well as an equal and opposing densification when compressed. Such geometries are being progressively employed in the development of novel products, especially in the fields of intelligent expandable actuators, shape morphing structures and minimally invasive implantable devices. Although several auxetic and potentially auxetic geometries have been summarized in previous reviews and research, precise information regarding relevant properties for design tasks is not always provided. In this study we present a comparative study of two-dimensional and three-dimensional auxetic geometries carried out by means of computer-aided design and engineering tools (from now on CAD–CAE). The first part of the study is focused on the development of a CAD library of auxetics. Once the library is developed we simulate the behavior of the different auxetic geometries and elaborate a systematic comparison, considering relevant properties of these geometries, such as Poisson ratio(s), maximum volume or area reductions attainable and equivalent Young's modulus, hoping it may provide useful information for future designs of devices based on these interesting structures.
Resumo:
In university studies, it is not unusual for students to drop some of the subjects they have enrolled in for the academic year. They start by not attending lectures, sometimes due to neglect or carelessness, or because they find the subject too difficult, this means that they lose the continuity in the topics that the professor follows. If they try to attend again they discover that they hardly understand anything and become discouraged and so decide to give up attending lectures and study on their own. However some fail to turn up to do their final exams and the failure rate of those who actually do the exams is high. The problem is that this is not only the case with one specific subject, but it is often the same with many subjects. The result is that students arent’s productive enough, wasting time and also prolonging their years of study which entails a great cost for families. Degree courses structured to be conducted and completed in three academic courses, it may in fact take up to an average of six or more academic courses. In this paper, we have studied this problem, which apart from the waste of money and time, produces frustration in the student, who finds that he has not been able to achieve what he had proposed at the beginning of the course. It is quite common, to find students who do not even pass nor 50% of the subjects they had enrolled in for the academic year. If this happens repeatedly to a student, it can be the point when he considers dropping out altogether. This is also a concern for the universities, especially in the early courses. In our experience as professors, we have found that students, who attend lectures regularly and follow the explanations, approach the final exams with confidence and rarely fail the subject. In this proposal we present some techniques and methods carried out to solve in possible, the problem of lack of attendance to lectures. This involves "rewarding students for their assistance and participation in lectures". Rewarding assistance with a "prize" that counts for the final mark on the subject and involving more participation in the development of lectures. We believe that we have to teach students to use the lectures as part of their learning in a non-passive way. We consider the professor's work as fundamental in terms of how to convey the usefulness of these topics explained and the applications that they will have for their professional life in the future. In this way the student see for himself the use and importance of what he is learning. When his participation is required, he will feel more involved and confident participating in the educational system. Finally we present statistical results of studies carried out on different degrees and on different subjects over two consecutive years. In the first year we assessed only the final exams without considering the students attendance, or participation. In the second year, we have applied the techniques and methods proposed here. In addition we have compared the two ways of assessing subjects.
Resumo:
This work shows the objective results of the acoustic quality of the Compañia de Jesús Church in Cordoba, Argentina. The acoustics of this Temple, built by the Orden Jesuita (Jesuit Order) two centuries ago and declared a World Heritage Site by UNESCO in 2000, is currently considered optimal by musicians as well as general public. In the second half of XVI century, with the Catholic reform, the need for improved speech intelligibility was given priority, being the Jesuit one of the orders that gave most importance to the construction of their temples. This church has constructive and spatial characteristics consistent with those needs. With the purpose of carrying out the acoustic assessment of the precincts, a work methodology that allowed comparing the results obtained from objective measures was developed by means of implementation of field measurements and space modeling, with subjective appreciation results, by developing surveys, with the aim of characterizing acoustically the sound space. This paper shows the comparison between the subjective results and objective criteria, which allowed important conclusions on the acoustic behavior of the temple to be obtained. In this way interesting data were obtained in relation to the subjective response of the acoustics of the church.
Resumo:
En la presente tesis desarrollamos una estrategia para la simulación numérica del comportamiento mecánico de la aorta humana usando modelos de elementos finitos no lineales. Prestamos especial atención a tres aspectos claves relacionados con la biomecánica de los tejidos blandos. Primero, el análisis del comportamiento anisótropo característico de los tejidos blandos debido a las familias de fibras de colágeno. Segundo, el análisis del ablandamiento presentado por los vasos sanguíneos cuando estos soportan cargas fuera del rango de funcionamiento fisiológico. Y finalmente, la inclusión de las tensiones residuales en las simulaciones en concordancia con el experimento de apertura de ángulo. El análisis del daño se aborda mediante dos aproximaciones diferentes. En la primera aproximación se presenta una formulación de daño local con regularización. Esta formulación tiene dos ingredientes principales. Por una parte, usa los principios de la teoría de la fisura difusa para garantizar la objetividad de los resultados con diferentes mallas. Por otra parte, usa el modelo bidimensional de Hodge-Petruska para describir el comportamiento mesoscópico de los fibriles. Partiendo de este modelo mesoscópico, las propiedades macroscópicas de las fibras de colágeno son obtenidas a través de un proceso de homogenización. En la segunda aproximación se presenta un modelo de daño no-local enriquecido con el gradiente de la variable de daño. El modelo se construye a partir del enriquecimiento de la función de energía con un término que contiene el gradiente material de la variable de daño no-local. La inclusión de este término asegura una regularización implícita de la implementación por elementos finitos, dando lugar a resultados de las simulaciones que no dependen de la malla. La aplicabilidad de este último modelo a problemas de biomecánica se estudia por medio de una simulación de un procedimiento quirúrgico típico conocido como angioplastia de balón. In the present thesis we develop a framework for the numerical simulation of the mechanical behaviour of the human aorta using non-linear finite element models. Special attention is paid to three key aspects related to the biomechanics of soft tissues. First, the modelling of the characteristic anisotropic behaviour of the softue due to the collagen fibre families. Secondly, the modelling of damage-related softening that blood vessels exhibit when subjected to loads beyond their physiological range. And finally, the inclusion of the residual stresses in the simulations in accordance with the opening-angle experiment The modelling of damage is addressed with two major and different approaches. In the first approach a continuum local damage formulation with regularisation is presented. This formulation has two principal ingredients. On the one hand, it makes use of the principles of the smeared crack theory to avoid the mesh size dependence of the structural response in softening. On the other hand, it uses a Hodge-Petruska bidimensional model to describe the fibrils as staggered arrays of tropocollagen molecules, and from this mesoscopic model the macroscopic material properties of the collagen fibres are obtained using an homogenisation process. In the second approach a non-local gradient-enhanced damage formulation is introduced. The model is built around the enhancement of the free energy function by means of a term that contains the referential gradient of the non-local damage variable. The inclusion of this term ensures an implicit regularisation of the finite element implementation, yielding mesh-objective results of the simulations. The applicability of the later model to biomechanically-related problems is studied by means of the simulation of a typical surgical procedure, namely, the balloon angioplasty.
Resumo:
Platinum is the most used catalyst in electrodes for fuel cells due to its high catalytic activity. Polymer electrolyte and direct methanol fuel cells usually include Pt as catalyst in their electrodes. In order to diminish the cost of such electrodes, different Pt deposition methods that permit lowering the metal load whilst maintaining their electroactivity, are being investigated. In this work, the behaviour of electron beam Pt (e-beam Pt) deposited electrodes for fuel cells is studied. Three different Pt loadings have been investigated. The electrochemical behaviour by cyclic voltammetry in H2SO4, HClO4 and in HClO4+MeOH before and after the Pt deposition on carbon cloth has been analysed. The Pt improves the electrochemical properties of the carbon support used. The electrochemical performance of e-beam Pt deposited electrodes was finally studied in a single direct methanol fuel cell (DMFC) and the obtained results indicate that this is a promising and adequate method to prepare fuel cell electrodes.