10 resultados para Structure Prediction Servers

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Service compositions put together loosely-coupled component services to perform more complex, higher level, or cross-organizational tasks in a platform-independent manner. Quality-of-Service (QoS) properties, such as execution time, availability, or cost, are critical for their usability, and permissible boundaries for their values are defined in Service Level Agreements (SLAs). We propose a method whereby constraints that model SLA conformance and violation are derived at any given point of the execution of a service composition. These constraints are generated using the structure of the composition and properties of the component services, which can be either known or empirically measured. Violation of these constraints means that the corresponding scenario is unfeasible, while satisfaction gives values for the constrained variables (start / end times for activities, or number of loop iterations) which make the scenario possible. These results can be used to perform optimized service matching or trigger preventive adaptation or healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of seismic hysteretic dampers for passive control is increasing exponentially in recent years for both new and existing buildings. In order to utilize hysteretic dampers within a structural system, it is of paramount importance to have simplified design procedures based upon knowledge gained from theoretical studies and validated with experimental results. Non-linear Static Procedures (NSPs) are presented as an alternative to the force-based methods more common nowadays. The application of NSPs to conventional structures has been well established; yet there is a lack of experimental information on how NSPs apply to systems with hysteretic dampers. In this research, several shaking table tests were conducted on two single bay and single story 1:2 scale structures with and without hysteretic dampers. The maximum response of the structure with dampers in terms of lateral displacement and base shear obtained from the tests was compared with the prediction provided by three well-known NSPs: (1) the improved version of the Capacity Spectrum Method (CSM) from FEMA 440; (2) the improved version of the Displacement Coefficient Method (DCM) from FEMA 440; and (3) the N2 Method implemented in Eurocode 8. In general, the improved version of the DCM and N2 methods are found to provide acceptable accuracy in prediction, but the CSM tends to underestimate the response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In professional video production, users have to access to huge multimedia files simultaneously in an error-free environment, this restriction force the use of expensive disk architectures for video servers. Previous researches proposed different RAID systems for each specific task (ingest, editing, file, play-out, etc.). Video production companies have to acquire different servers with different RAIDs systems in order to support each task in the production workflow. The solution has multiples disadvantages, duplicated material in several RAIDs, duplicated material for different qualities, transfer and transcoding processes, etc. In this work, an architecture for video servers based on the spreading of JPEG200 data in different RAIDs is presented, each individual part of the data structure goes to a specific RAID type depending on the effect that produces the data on the overall image quality, the method provide a redundancy correlated with the data rank. The global storage can be used in all the different tasks of the production workflow saving disk space, redundant files and transfers procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the seismic analysis of a deeply embedded non-slender structure hosting the pumping unit of a reservoir. The dynamic response in this type of problems is usually studied under the assumption of a perfectly rigid structure using a sub-structuring procedure (three-step solution) proposed specifically for this hypothesis. Such an approach enables a relatively simple assessment of the importance of some key factors influencing the structural response. In this work, the problem is also solved in a single step using a direct approach in which the structure and surrounding soil are modelled as a coupled system with its actual geometry and flexibility. Results indicate that, quite surprisingly, there are significant differences among prediction using both methods. Furthermore, neglecting the flexibility of the structure leads to a significant underestimation of the spectral accelerations at certain points of the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental research on imposed deformation is generally conducted on small scale laboratory experiments. The attractiveness of field research lies in the possibility to compare results obtained from full scale structures to theoretical prediction. Unfortunately, measurements obtained from real structures are rarely described in literature. The structural response of integral edifices depends significantly on stiffness changes and constraints. The New Airport Terminal Barajas in Madrid, Spain provides with large integral modules, partially post?tensioned concrete frames, cast monolithically over three floor levels and an overall length of approx. 80 m. The field campaign described in this article explains the instrumentation of one of these frames focusing on the influence of imposed deformations such as creep, shrinkage and temperature. The applied monitoring equipment included embedded strain gages, thermocouples, DEMEC measurements and simple displacement measurements. Data was collected throughout construction and during two years of service. A complete data range of five years is presented and analysed. The results are compared with a simple approach to predict the long?term shortening of this concrete structure. Both analytical and experimental results are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last two decades the topic of human induced vibration has attracted a lot of attention among civil engineering practitioners and academics alike. Usually this type of problem may be encountered in pedestrian footbridges or floors of paperless offices. Slender designs are becoming increasingly popular, and as a consequence, the importance of paying attention to vibration serviceability also increases. This paper resumes the results obtained from measurements taken at different points of an aluminium catwalk which is 6 m in length by 0.6 m in width. Measurements were carried out when subjecting the structure to different actions:1)Static test: a steel cylinder of 35 kg was placed in the middle of the catwalk; 2)Dynamic test: this test consists of exciting the structure with singles impulses; 3)Dynamic test: people walking on the catwalk. Identification of the mechanical properties of the structure is an achievement of the paper. Indirect methods were used to estimate properties including the support stiffness, the beam bending stiffness, the mass of the structure (using Rayleigh method and iterative matrix method), the natural frequency (using the time domain and frequency domain analysis) and the damping ratio (by calculating the logarithmic decrement). Experimental results and numerical predictions for the response of an aluminium catwalk subjected to walking loads have been compared. The damping of this light weight structure depends on the amplitude of vibration which complicates the tuning of a structural model. In the light of the results obtained it seems that the used walking load model is not appropriate as the predicted transient vibration values (TTVs) are much higher than the measured ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crowd induced dynamic loading in large structures, such as gymnasiums or stadium, is usually modelled as a series of harmonic loads which are defined in terms of their Fourier coefficients. Different values of these coefficients that were obtained from full scale measurements can be found in codes. Recently, an alternative has been proposed, based on random generation of load time histories that take into account phase lag among individuals inside the crowd. This paper presents the testing done on a structure designed to be a gymnasium. Two series of dynamic test were performed on the gym slab. For the first test an electrodynamic shaker was placed at several locations and during the second one people located inside a marked area bounced and jumped guided by different metronome rates. A finite element model (FEM) is presented and a comparison of numerically predicted and experimentally observed vibration modes and frequencies has been used to assess its validity. The second group of measurements will be compared with predictions made using the FEM model and three alternatives for crowd induced load modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. The average consumption of a single data center is equivalent to the energy consumption of 25.000 households. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. This work proposes an automatic method, based on Multi-Objective Particle Swarm Optimization, for the identification of power models of enterprise servers in Cloud data centers. Our approach, as opposed to previous procedures, does not only consider the workload consolidation for deriving the power model, but also incorporates other non traditional factors like the static power consumption and its dependence with temperature. Our experimental results shows that we reach slightly better models than classical approaches, but simul- taneously simplifying the power model structure and thus the numbers of sensors needed, which is very promising for a short-term energy prediction. This work, validated with real Cloud applications, broadens the possibilities to derive efficient energy saving techniques for Cloud facilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new algorithm for the design of prediction structures with low delay and limited penalty in the rate-distortion performance for multiview video coding schemes. This algorithm constitutes one of the elements of a framework for the analysis and optimization of delay in multiview coding schemes that is based in graph theory. The objective of the algorithm is to find the best combination of prediction dependencies to prune from a multiview prediction structure, given a number of cuts. Taking into account the properties of the graph-based analysis of the encoding delay, the algorithm is able to find the best prediction dependencies to eliminate from an original prediction structure, while limiting the number of cut combinations to evaluate. We show that this algorithm obtains optimum results in the reduction of the encoding latency with a lower computational complexity than exhaustive search alternatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El estudio de la estructura del suelo es de vital importancia en diferentes campos de la ciencia y la tecnología. La estructura del suelo controla procesos físicos y biológicos importantes en los sistemas suelo-planta-microorganismos. Estos procesos están dominados por la geometría de la estructura del suelo, y una caracterización cuantitativa de la heterogeneidad de la geometría del espacio poroso es beneficiosa para la predicción de propiedades físicas del suelo. La tecnología de la tomografía computerizada de rayos-X (CT) nos permite obtener imágenes digitales tridimensionales del interior de una muestra de suelo, proporcionando información de la geometría de los poros del suelo y permitiendo el estudio de los poros sin destruir las muestras. Las técnicas de la geometría fractal y de la morfología matemática se han propuesto como una poderosa herramienta para analizar y cuantificar características geométricas. Las dimensiones fractales del espacio poroso, de la interfaz poro-sólido y de la distribución de tamaños de poros son indicadores de la complejidad de la estructura del suelo. Los funcionales de Minkowski y las funciones morfológicas proporcionan medios para medir características geométricas fundamentales de los objetos geométricos tridimensionales. Esto es, volumen, superficie, curvatura media de la superficie y conectividad. Las características del suelo como la distribución de tamaños de poros, el volumen del espacio poroso o la superficie poro-solido pueden ser alteradas por diferentes practicas de manejo de suelo. En este trabajo analizamos imágenes tomográficas de muestras de suelo de dos zonas cercanas con practicas de manejo diferentes. Obtenemos un conjunto de medidas geométricas, para evaluar y cuantificar posibles diferencias que el laboreo pueda haber causado en el suelo. ABSTRACT The study of soil structure is of vital importance in different fields of science and technology. Soil structure controls important physical and biological processes in soil-plant-microbial systems. Those processes are dominated by the geometry of soil pore structure, and a quantitative characterization of the spatial heterogeneity of the pore space geometry is beneficial for prediction of soil physical properties. The technology of X-ray computed tomography (CT) allows us to obtain three-dimensional digital images of the inside of a soil sample providing information on soil pore geometry and enabling the study of the pores without disturbing the samples. Fractal geometry and mathematical morphological techniques have been proposed as powerful tools to analyze and quantify geometrical features. Fractal dimensions of pore space, pore-solid interface and pore size distribution are indicators of soil structure complexity. Minkowski functionals and morphological functions provide means to measure fundamental geometrical features of three-dimensional geometrical objects, that is, volume, boundary surface, mean boundary surface curvature, and connectivity. Soil features such as pore-size distribution, pore space volume or pore-solid surface can be altered by different soil management practices. In this work we analyze CT images of soil samples from two nearby areas with contrasting management practices. We performed a set of geometrical measures, some of them from mathematical morphology, to assess and quantify any possible difference that tillage may have caused on the soil.