6 resultados para Structural Determination
em Universidad Politécnica de Madrid
Resumo:
Ionoluminescence (IL) has been used in this work as a sensitive tool to probe the microscopic electronic processes and structural changes produced on quartz by the irradiation with swift heavy ions. The IL yields have been measured as a function of irradiation fluence and electronic stopping power. The results are consistent with the assignment of the 2.7 eV (460 nm) band to the recombination of self-trapped excitons at the damaged regions in the irradiated material. Moreover, it was possible to determine the threshold for amorphization by a single ion impact, as 1:7 keV/nm, which agrees well with the results of previous studies.
Resumo:
A Mindlin plate with periodically distributed ribs patterns is analyzed by using homogenization techniques based on asymptotic expansion methods. The stiffness matrix of the homogenized plate is found to be dependent on the geometrical characteristics of the periodical cell, i.e. its skewness, plan shape, thickness variation etc. and on the plate material elastic constants. The computation of this plate stiffness matrix is carried out by averaging over the cell domain some solutions of different periodical boundary value problems. These boundary value problems are defined in variational form by linear first order differential operators on the cell domain and the boundary conditions of the variational equation correspond to a periodic structural problem. The elements of the stiffness matrix of homogenized plate are obtained by linear combinations of the averaged solution functions of the above mentioned boundary value problems. Finally, an illustrative example of application of this homogenization technique to hollowed plates and plate structures with ribs patterns regularly arranged over its area is shown. The possibility of using in the profesional practice the present procedure to the actual analysis of floors of typical buildings is also emphasized.
Resumo:
Eutectic temperature and composition in the CuO–TiO2 pseudobinary system have been experimentally determined in air by means differential thermal analysis (DTA), thermogravimetry (TG) and hot-stage microscopy (HSM). Samples of the new eutectic composition treated at different temperatures have been characterized by X-ray diffraction (XRD) and X-ray absorption near-edge structural spectroscopy (XANES) to identify phases and to determine the Cu valence state, respectively. The results show that the eutectic temperature in air is higher by 100 °C (∼1000 °C) for a Ti-richer composition (XTiO2=25 mol%) than the one calculated in the literature. The reduction of Cu2+ to Cu+ takes places at about 1030 °C. The existence of Cu2TiO3 and Cu3TiO4 has been confirmed by XRD in the temperature range between 1045 and 1200 °C.
Resumo:
The present work aims to assess Laser-Induced Plasma Spectrometry (LIPS) as a tool for the characterization of photovoltaic materials. Despite being a well-established technique with applications to many scientific and industrial fields, so far LIPS is little known to the photovoltaic scientific community. The technique allows the rapid characterization of layered samples without sample preparation, in open atmosphere and in real time. In this paper, we assess LIPS ability for the determination of elements that are difficult to analyze by other broadly used techniques, or for producing analytical information from very low-concentration elements. The results of the LIPS characterization of two different samples are presented: 1) a 90 nm, Al-doped ZnO layer deposited on a Si substrate by RF sputtering and 2) a Te-doped GaInP layer grown on GaAs by Metalorganic Vapor Phase Epitaxy. For both cases, the depth profile of the constituent and dopant elements is reported along with details of the experimental setup and the optimization of key parameters. It is remarkable that the longest time of analysis was ∼10 s, what, in conjunction with the other characteristics mentioned, makes of LIPS an appealing technique for rapid screening or quality control whether at the lab or at the production line.
Resumo:
Neutron diffraction data of DyCrO4 oxide, prepared at 4 GPa and 833 K from the ambient pressure zircon-type, reveal that crystallize with the scheelite-type structure, space group I41/a. Accompanying this structural phase transition induced by pressure the magnetic properties change dramatically from ferromagnetism in the case of zircon to antiferromagnetism for the scheelite polymorph with a T N= 19 K. The analysis of the neutron diffraction data obtained at 1.2 K has been used to determine the magnetic structure of this DyCrO4-scheelite oxide which can be described with a k = [0, 0, 0] as propagation vector, where the Dy and Cr moments are lying in the ab-plane of the scheelite structure. The ordered magnetic moments are 10 µB and 1 µB for Dy+3 and Cr+5 respectively
Resumo:
Existe normalmente el propósito de obtener la mejor solución posible cuando se plantea un problema estructural, entendiendo como mejor la solución que cumpliendo los requisitos estructurales, de uso, etc., tiene un coste físico menor. En una primera aproximación se puede representar el coste físico por medio del peso propio de la estructura, lo que permite plantear la búsqueda de la mejor solución como la de menor peso. Desde un punto de vista práctico, la obtención de buenas soluciones—es decir, soluciones cuyo coste sea solo ligeramente mayor que el de la mejor solución— es una tarea tan importante como la obtención de óptimos absolutos, algo en general difícilmente abordable. Para disponer de una medida de la eficiencia que haga posible la comparación entre soluciones se propone la siguiente definición de rendimiento estructural: la razón entre la carga útil que hay que soportar y la carga total que hay que contabilizar (la suma de la carga útil y el peso propio). La forma estructural puede considerarse compuesta por cuatro conceptos, que junto con el material, definen una estructura: tamaño, esquema, proporción, y grueso.Galileo (1638) propuso la existencia de un tamaño insuperable para cada problema estructural— el tamaño para el que el peso propio agota una estructura para un esquema y proporción dados—. Dicho tamaño, o alcance estructural, será distinto para cada material utilizado; la única información necesaria del material para su determinación es la razón entre su resistencia y su peso especifico, una magnitud a la que denominamos alcance del material. En estructuras de tamaño muy pequeño en relación con su alcance estructural la anterior definición de rendimiento es inútil. En este caso —estructuras de “talla nula” en las que el peso propio es despreciable frente a la carga útil— se propone como medida del coste la magnitud adimensional que denominamos número de Michell, que se deriva de la “cantidad” introducida por A. G. M. Michell en su artículo seminal de 1904, desarrollado a partir de un lema de J. C. Maxwell de 1870. A finales del siglo pasado, R. Aroca combino las teorías de Galileo y de Maxwell y Michell, proponiendo una regla de diseño de fácil aplicación (regla GA), que permite la estimación del alcance y del rendimiento de una forma estructural. En el presente trabajo se estudia la eficiencia de estructuras trianguladas en problemas estructurales de flexión, teniendo en cuenta la influencia del tamaño. Por un lado, en el caso de estructuras de tamaño nulo se exploran esquemas cercanos al optimo mediante diversos métodos de minoración, con el objetivo de obtener formas cuyo coste (medido con su numero deMichell) sea muy próximo al del optimo absoluto pero obteniendo una reducción importante de su complejidad. Por otro lado, se presenta un método para determinar el alcance estructural de estructuras trianguladas (teniendo en cuenta el efecto local de las flexiones en los elementos de dichas estructuras), comparando su resultado con el obtenido al aplicar la regla GA, mostrando las condiciones en las que es de aplicación. Por último se identifican las líneas de investigación futura: la medida de la complejidad; la contabilidad del coste de las cimentaciones y la extensión de los métodos de minoración cuando se tiene en cuenta el peso propio. ABSTRACT When a structural problem is posed, the intention is usually to obtain the best solution, understanding this as the solution that fulfilling the different requirements: structural, use, etc., has the lowest physical cost. In a first approximation, the physical cost can be represented by the self-weight of the structure; this allows to consider the search of the best solution as the one with the lowest self-weight. But, from a practical point of view, obtaining good solutions—i.e. solutions with higher although comparable physical cost than the optimum— can be as important as finding the optimal ones, because this is, generally, a not affordable task. In order to have a measure of the efficiency that allows the comparison between different solutions, a definition of structural efficiency is proposed: the ratio between the useful load and the total load —i.e. the useful load plus the self-weight resulting of the structural sizing—. The structural form can be considered to be formed by four concepts, which together with its material, completely define a particular structure. These are: Size, Schema, Slenderness or Proportion, and Thickness. Galileo (1638) postulated the existence of an insurmountable size for structural problems—the size for which a structure with a given schema and a given slenderness, is only able to resist its self-weight—. Such size, or structural scope will be different for every different used material; the only needed information about the material to determine such size is the ratio between its allowable stress and its specific weight: a characteristic length that we name material structural scope. The definition of efficiency given above is not useful for structures that have a small size in comparison with the insurmountable size. In this case—structures with null size, inwhich the self-weight is negligible in comparisonwith the useful load—we use as measure of the cost the dimensionless magnitude that we call Michell’s number, an amount derived from the “quantity” introduced by A. G. M. Michell in his seminal article published in 1904, developed out of a result from J. C.Maxwell of 1870. R. Aroca joined the theories of Galileo and the theories of Maxwell and Michell, obtaining some design rules of direct application (that we denominate “GA rule”), that allow the estimation of the structural scope and the efficiency of a structural schema. In this work the efficiency of truss-like structures resolving bending problems is studied, taking into consideration the influence of the size. On the one hand, in the case of structures with null size, near-optimal layouts are explored using several minimization methods, in order to obtain forms with cost near to the absolute optimum but with a significant reduction of the complexity. On the other hand, a method for the determination of the insurmountable size for truss-like structures is shown, having into account local bending effects. The results are checked with the GA rule, showing the conditions in which it is applicable. Finally, some directions for future research are proposed: the measure of the complexity, the cost of foundations and the extension of optimization methods having into account the self-weight.