6 resultados para Storm surges
em Universidad Politécnica de Madrid
Resumo:
Observation has widely shown for nearly all last century that the Spanish (Dynamic) Maritime Climate was following around 10 to 11 year cycles in its most significant figure, wind wave, despite it being better to register cycles of 20 to 22 years, in analogical way with the semi-diurnal and diurnal cycles of Cantabrian tides. Those cycles were soon linked to sun activity and, at the end of the century, the latter was related to the Solar System evolution. We know now that waves and storm surges are coupled and that (Dynamic) Maritime Climate forms part of a more complex “Thermal Machine” including Hydrological cycle. The analysis of coastal floods could so facilitate the extension of that experience. According to their immediate cause, simple flood are usually sorted out into flash, pluvial, fluvial, groundwater and coastal types, considering the last as caused by sea waters. But the fact is that most of coastal floods are the result of the concomitance of several former simple types. Actually, the several Southeastern Mediterranean coastal flood events show to be the result of the superposition within the coastal zone of flash, fluvial, pluvial and groundwater flood types under boundary condition imposed by the concomitant storm sea level rise. This work shall be regarded as an attempt to clarify that cyclic experience, through an in-depth review of a past flood events in Valencia (Turia and Júcar basins), as in Murcia (Segura’s) as well.
Resumo:
Very recently (Banerjee et al. in Astrophys. Space, doi:1007/s10509-011-0836-1, 2011) the statistics of geomagnetic Disturbance storm (Dst) index have been addressed, and the conclusion from this analysis suggests that the underlying dynamical process can be modeled as a fractional Brownian motion with persistent long-range correlations. In this comment we expose several misconceptions and flaws in the statistical analysis of that work. On the basis of these arguments, the former conclusion should be revisited.
Resumo:
Over the last decade, Grid computing paved the way for a new level of large scale distributed systems. This infrastructure made it possible to securely and reliably take advantage of widely separated computational resources that are part of several different organizations. Resources can be incorporated to the Grid, building a theoretical virtual supercomputer. In time, cloud computing emerged as a new type of large scale distributed system, inheriting and expanding the expertise and knowledge that have been obtained so far. Some of the main characteristics of Grids naturally evolved into clouds, others were modified and adapted and others were simply discarded or postponed. Regardless of these technical specifics, both Grids and clouds together can be considered as one of the most important advances in large scale distributed computing of the past ten years; however, this step in distributed computing has came along with a completely new level of complexity. Grid and cloud management mechanisms play a key role, and correct analysis and understanding of the system behavior are needed. Large scale distributed systems must be able to self-manage, incorporating autonomic features capable of controlling and optimizing all resources and services. Traditional distributed computing management mechanisms analyze each resource separately and adjust specific parameters of each one of them. When trying to adapt the same procedures to Grid and cloud computing, the vast complexity of these systems can make this task extremely complicated. But large scale distributed systems complexity could only be a matter of perspective. It could be possible to understand the Grid or cloud behavior as a single entity, instead of a set of resources. This abstraction could provide a different understanding of the system, describing large scale behavior and global events that probably would not be detected analyzing each resource separately. In this work we define a theoretical framework that combines both ideas, multiple resources and single entity, to develop large scale distributed systems management techniques aimed at system performance optimization, increased dependability and Quality of Service (QoS). The resulting synergy could be the key 350 J. Montes et al. to address the most important difficulties of Grid and cloud management.
Resumo:
Storm evolution is fundamental for analysing the damage progression of the different failure modes and establishing suitable protocols for maintaining and optimally sizing structures. However, this aspect has hardly been studied and practically the whole of the studies dealing with the subject adopt the Equivalent triangle storm. As against this approach, two new ones are proposed. The first is the Equivalent Triangle Magnitude Storm model (ETMS), whose base, the triangular storm duration, D, is established such that its magnitude (area describing the storm history above the reference threshold level which sets the storm condition),HT, equals the real storm magnitude. The other is the Equivalent Triangle Number of Waves Storm (ETNWS), where the base is referred in terms of the real storm's number of waves,Nz. Three approaches are used for estimating the mean period, Tm, associated to each of the sea states defining the storm evolution, which is necessary to determine the full energy flux withstood by the structure in the course of the extreme event. Two are based on the Jonswap spectrum representativity and the other uses the bivariate Gumbel copula (Hs, Tm), resulting from adjusting the storm peaks. The representativity of the approaches proposed and those defined in specialised literature are analysed by comparing the main armour layer's progressive loss of hydraulic stability caused by real storms and that relating to theoretical ones. An empirical maximum energy flux model is used for this purpose. The agreement between the empirical and theoretical results demonstrates that the representativity of the different approaches depends on the storm characteristics and point towards a need to investigate other geometrical shapes to characterise the storm evolution associated with sea states heavily influenced by swell wave components.
Resumo:
Storm evolution is fundamental for analysing the damage progression of the different failure modes and establishing suitable protocols for maintaining and optimally sizing structures. However, this aspect has hardly been studied and practically the whole of the studies dealing with the subject adopt the Equivalent triangle storm. As against this approach, two new ones are proposed. The first is the Equivalent Triangle Magnitude Storm model (ETMS), whose base, the triangular storm duration, D, is established such that its magnitude (area describing the storm history above the reference threshold level which sets the storm condition),HT, equals the real storm magnitude. The other is the Equivalent Triangle Number of Waves Storm (ETNWS), where the base is referred in terms of the real storm's number of waves,Nz. Three approaches are used for estimating the mean period, Tm, associated to each of the sea states defining the storm evolution, which is necessary to determine the full energy flux withstood by the structure in the course of the extreme event. Two are based on the Jonswap spectrum representativity and the other uses the bivariate Gumbel copula (Hs, Tm), resulting from adjusting the storm peaks. The representativity of the approaches proposed and those defined in specialised literature are analysed by comparing the main armour layer's progressive loss of hydraulic stability caused by real storms and that relating to theoretical ones. An empirical maximum energy flux model is used for this purpose. The agreement between the empirical and theoretical results demonstrates that the representativity of the different approaches depends on the storm characteristics and point towards a need to investigate other geometrical shapes to characterise the storm evolution associated with sea states heavily influenced by swell wave components.
Resumo:
The different theoretical models related with storm wave characterization focus on determining the significant wave height of the peak storm, the mean period and, usually assuming a triangle storm shape, their duration. In some cases, the main direction is also considered. Nevertheless, definition of the whole storm history, including the variation of the main random variables during the storm cycle is not taken into consideration. The representativeness of the proposed storm models, analysed in a recent study using an empirical maximum energy flux time dependent function shows that the behaviour of the different storm models is extremely dependent on the climatic characteristics of the project area. Moreover, there are no theoretical models able to adequately reproduce storm history evolution of the sea states characterized by important swell components. To overcome this shortcoming, several theoretical storm shapes are investigated taking into consideration the bases of the three best theoretical storm models, the Equivalent Magnitude Storm (EMS), the Equivalent Number of Waves Storm (ENWS) and the Equivalent Duration Storm (EDS) models. To analyse the representativeness of the new storm shape, the aforementioned maximum energy flux formulation and a wave overtopping discharge structure function are used. With the empirical energy flux formulation, correctness of the different approaches is focussed on the progressive hydraulic stability loss of the main armour layer caused by real and theoretical storms. For the overtopping structure equation, the total volume of discharge is considered. In all cases, the results obtained highlight the greater representativeness of the triangular EMS model for sea waves and the trapezoidal (nonparallel sides) EMS model for waves with a higher degree of wave development. Taking into account the increase in offshore and shallow water wind turbines, maritime transport and deep vertical breakwaters, the maximum wave height of the whole storm history and that corresponding to each sea state belonging to its cycle's evolution is also considered. The procedure considers the information usually available for extreme waves' characterization. Extrapolations of the maximum wave height of the selected storms have also been considered. The 4th order statistics of the sea state belonging to the real and theoretical storm have been estimated to complete the statistical analysis of individual wave height