20 resultados para Steam-navigation
em Universidad Politécnica de Madrid
Resumo:
Sewage sludge gasification assays were performed in an atmospheric fluidised bed reactor using air and air–steam mixtures as the gasifying agents. Dolomite, olivine and alumina are three well known tar removal catalysts used in biomass gasification processing. However, little information is available regarding their performance in sewage sludge gasification. The aim of the current study was to learn about the influence of these three catalysts in the product distribution and tar production during sewage sludge gasification. To this end, a set of assays was performed in which the temperature (750–850 °C), the in-bed catalyst content (0, 10 and 15 wt.%) and the steam–biomass ratio (SB) in the range of 0–1 were varied with a constant equivalence ratio (ER) of 0.3. The results were compared to the results from gasification without a catalyst. We show that dolomite has the highest activity in tar elimination, followed by alumina and olivine. In addition to improving tar removal, the presence of water vapour and the catalysts increased the content of H2 in the gases by nearly 60%.
Resumo:
Numerous references can be found in scientific literature regarding biomass gasification. However, there are few works related to sludge gasification. A study of sewage sludge gasification process in a bubbling fluidised bed gasifier on a laboratory scale is here reported. The aim was to find the optimum conditions for reducing the production of tars and gain more information on the influx of different operating variables in the products resulting from the gasification of this waste. The variables studied were the equivalence ratio (ER), the steam-biomass ratio (SB) and temperature. Specifically, the ER was varied from 0.2 to 0.4, the SB from 0 to 1 and the temperature from 750 °C (1023 K) to 850 °C (1123 K). Although it was observed that tar production could be considerably reduced (up to 72%) by optimising the gasification conditions, the effect of using alumina (aluminium oxide, of proven efficacy in destroying the tar produced in biomass gasification) as primary catalyst in air and air-steam mixture tests was also verified. The results show that by adding small quantities of alumina to the bed (10% by weight of fed sludge) considerable reductions in tar production can be obtained (up to 42%) improving, at the same time, the lower heating value (LHV) of the gas and carbon conversion.
Resumo:
A Probabilistic Safety Assessment (PSA) is being developed for a steam-methane reforming hydrogen production plant linked to a High-Temperature Gas Cooled Nuclear Reactor (HTGR). This work is based on the Japan Atomic Energy Research Institute’s (JAERI) High Temperature Test Reactor (HTTR) prototype in Japan. This study has two major objectives: calculate the risk to onsite and offsite individuals, and calculate the frequency of different types of damage to the complex. A simplified HAZOP study was performed to identify initiating events, based on existing studies. The initiating events presented here are methane pipe break, helium pipe break, and PPWC heat exchanger pipe break. Generic data was used for the fault tree analysis and the initiating event frequency. Saphire was used for the PSA analysis. The results show that the average frequency of an accident at this complex is 2.5E-06, which is divided into the various end states. The dominant sequences result in graphite oxidation which does not pose a health risk to the population. The dominant sequences that could affect the population are those that result in a methane explosion and occur 6.6E-8/year, while the other sequences are much less frequent. The health risk presents itself if there are people in the vicinity who could be affected by the explosion. This analysis also demonstrates that an accident in one of the plants has little effect on the other. This is true given the design base distance between the plants, the fact that the reactor is underground, as well as other safety characteristics of the HTGR. Sensitivity studies are being performed in order to determine where additional and improved data is needed.
Resumo:
Aeronautical charts underlie the representation of aeronautic geographic information that supports pilots in flight. Nevertheless, the charts become complex due to the high density of data and the different kinds of charts that support each phase of flight. These features make difficult using them on board. After conducting a study, with civil Spaniard pilots, that aims to understand and to evaluate their needs related to Geographic Information, it is proposed a solution to implement a platform based on geographic information standards (OGC, ISO) and supported by a distributed Web architecture. This platform facilitates the use, retrieval, updating of information and its exchange among different institutions through private and public users. As a first element to ensure interoperability of information, we suggest an aeronautical metadata profile that sets guidelines and elements for its description. The metadata profile meets the standards set by ICAO, Eurocontrol and ISO. The platform offers three levels of access to data through different types of devices and user profiles. Thus, aeronautical institutions could edit data while pilot is on board accessing digital aeronautical charts through a laptop or Table PC. This paper suggests an alternative and reliable way for distributing aeronautical geoinformation, focusing on specific functions or displaying and querying.
Resumo:
Los estudios realizados hasta el momento para la determinación de la calidad de medida del instrumental geodésico han estado dirigidos, fundamentalmente, a las medidas angulares y de distancias. Sin embargo, en los últimos años se ha impuesto la tendencia generalizada de utilizar equipos GNSS (Global Navigation Satellite System) en el campo de las aplicaciones geomáticas sin que se haya establecido una metodología que permita obtener la corrección de calibración y su incertidumbre para estos equipos. La finalidad de esta Tesis es establecer los requisitos que debe satisfacer una red para ser considerada Red Patrón con trazabilidad metrológica, así como la metodología para la verificación y calibración de instrumental GNSS en redes patrón. Para ello, se ha diseñado y elaborado un procedimiento técnico de calibración de equipos GNSS en el que se han definido las contribuciones a la incertidumbre de medida. El procedimiento, que se ha aplicado en diferentes redes para distintos equipos, ha permitido obtener la incertidumbre expandida de dichos equipos siguiendo las recomendaciones de la Guide to the Expression of Uncertainty in Measurement del Joint Committee for Guides in Metrology. Asimismo, se han determinado mediante técnicas de observación por satélite las coordenadas tridimensionales de las bases que conforman las redes consideradas en la investigación, y se han desarrollado simulaciones en función de diversos valores de las desviaciones típicas experimentales de los puntos fijos que se han utilizado en el ajuste mínimo cuadrático de los vectores o líneas base. Los resultados obtenidos han puesto de manifiesto la importancia que tiene el conocimiento de las desviaciones típicas experimentales en el cálculo de incertidumbres de las coordenadas tridimensionales de las bases. Basándose en estudios y observaciones de gran calidad técnica, llevados a cabo en estas redes con anterioridad, se ha realizado un exhaustivo análisis que ha permitido determinar las condiciones que debe satisfacer una red patrón. Además, se han diseñado procedimientos técnicos de calibración que permiten calcular la incertidumbre expandida de medida de los instrumentos geodésicos que proporcionan ángulos y distancias obtenidas por métodos electromagnéticos, ya que dichos instrumentos son los que van a permitir la diseminación de la trazabilidad metrológica a las redes patrón para la verificación y calibración de los equipos GNSS. De este modo, ha sido posible la determinación de las correcciones de calibración local de equipos GNSS de alta exactitud en las redes patrón. En esta Tesis se ha obtenido la incertidumbre de la corrección de calibración mediante dos metodologías diferentes; en la primera se ha aplicado la propagación de incertidumbres, mientras que en la segunda se ha aplicado el método de Monte Carlo de simulación de variables aleatorias. El análisis de los resultados obtenidos confirma la validez de ambas metodologías para la determinación de la incertidumbre de calibración de instrumental GNSS. ABSTRACT The studies carried out so far for the determination of the quality of measurement of geodetic instruments have been aimed, primarily, to measure angles and distances. However, in recent years it has been accepted to use GNSS (Global Navigation Satellite System) equipment in the field of Geomatic applications, for data capture, without establishing a methodology that allows obtaining the calibration correction and its uncertainty. The purpose of this Thesis is to establish the requirements that a network must meet to be considered a StandardNetwork with metrological traceability, as well as the methodology for the verification and calibration of GNSS instrumental in those standard networks. To do this, a technical calibration procedure has been designed, developed and defined for GNSS equipment determining the contributions to the uncertainty of measurement. The procedure, which has been applied in different networks for different equipment, has alloweddetermining the expanded uncertainty of such equipment following the recommendations of the Guide to the Expression of Uncertainty in Measurement of the Joint Committee for Guides in Metrology. In addition, the three-dimensional coordinates of the bases which constitute the networks considered in the investigationhave been determined by satellite-based techniques. There have been several developed simulations based on different values of experimental standard deviations of the fixed points that have been used in the least squares vectors or base lines calculations. The results have shown the importance that the knowledge of experimental standard deviations has in the calculation of uncertainties of the three-dimensional coordinates of the bases. Based on high technical quality studies and observations carried out in these networks previously, it has been possible to make an exhaustive analysis that has allowed determining the requirements that a standard network must meet. In addition, technical calibration procedures have been developed to allow the uncertainty estimation of measurement carried outby geodetic instruments that provide angles and distances obtained by electromagnetic methods. These instruments provide the metrological traceability to standard networks used for verification and calibration of GNSS equipment. As a result, it has been possible the estimation of local calibration corrections for high accuracy GNSS equipment in standardnetworks. In this Thesis, the uncertainty of calibration correction has been calculated using two different methodologies: the first one by applying the law of propagation of uncertainty, while the second has applied the propagation of distributions using the Monte Carlo method. The analysis of the obtained results confirms the validity of both methodologies for estimating the calibration uncertainty of GNSS equipment.
Resumo:
This paper addresses initial efforts to develop a navigation system for ground vehicles supported by visual feedback from a mini aerial vehicle. A visual-based algorithm computes the ground vehicle pose in the world frame, as well as possible obstacles within the ground vehicle pathway. Relying on that information, a navigation and obstacle avoidance system is used to re-plan the ground vehicle trajectory, ensuring an optimal detour. Finally, some experiments are presented employing a unmanned ground vehicle (UGV) and a low cost mini unmanned aerial vehicle (UAV).
Resumo:
This work presents a navigation system for UGVs in large outdoor environments; virtual obstacles are added to the system in order to avoid zones that may present risks to the UGV or the elements in its surroundings. The platform, software architecture and the modifications necessary to handle the virtual obstacles are explained in detail. Several tests have been performed and their results show that the system proposed is capable of performing safe navigation in complex environments.
Resumo:
This paper proposes a novel robotic system that is able to move along the outside of the oil pipelines used in Electric Submersible Pumps (ESP) and Progressive Cavity Pumps (PCP) applications. This novel design, called RETOV, proposes a light weight structure robot that can be equipped with sensors to measure environmental variables avoiding damage in pumps and wells. In this paper, the main considerations and methodology of design and implementation are discussed. Finally, the first experimental results that show RETOV moving in vertical pipelines are analyzed.
Resumo:
This article presents the proposal of the Computer Vision Group to the first phase of the international competition “Concurso de Ingeniería de Control 2012, Control Aut ́onomo del seguimiento de trayectorias de un vehículo cuatrirrotor”. This phase consists mainly of two parts: identifying a model and designing a trajectory controller for the AR Drone quadrotor. For the identification task, two models are proposed: a simplified model that captures only the main dynamics of the quadrotor, and a second model based on the physical laws underlying the AR Drone behavior. The trajectory controller design is based on the simplified model, whereas the physical model is used to tune the controller to attain a certain level of robust stability to model uncertainties. The controller design is simplified by the hypothesis that accurate positions sensors will be available to implement a feedback controller.
Resumo:
The Integrated Safety Assessment (ISA) methodology, developed by the Spanish Nuclear Safety Council (CSN), has been applied to a thermo-hydraulical analysis of a Westinghouse 3-loop PWR plant by means of the dynamic event trees (DET) for Steam Generator Tube Rupture (SGTR) sequences. The ISA methodology allows obtaining the SGTR Dynamic Event Tree taking into account the operator actuation times. Simulations are performed with SCAIS (Simulation Code system for Integrated Safety Assessment), which includes a dynamic coupling with MAAP thermal hydraulic code. The results show the capability of the ISA methodology and SCAIS platform to obtain the DET of complex sequences.
Resumo:
The main problem of pedestrian dead-reckoning (PDR) using only a body-attached inertial measurement unit is the accumulation of heading errors. The heading provided by magnetometers in indoor buildings is in general not reliable and therefore it is commonly not used. Recently, a new method was proposed called heuristic drift elimination (HDE) that minimises the heading error when navigating in buildings. It assumes that the majority of buildings have their corridors parallel to each other, or they intersect at right angles, and consequently most of the time the person walks along a straight path with a heading constrained to one of the four possible directions. In this article we study the performance of HDE-based methods in complex buildings, i.e. with pathways also oriented at 45°, long curved corridors, and wide areas where non-oriented motion is possible. We explain how the performance of the original HDE method can be deteriorated in complex buildings, and also, how severe errors can appear in the case of false matches with the building's dominant directions. Although magnetic compassing indoors has a chaotic behaviour, in this article we analyse large data-sets in order to study the potential use that magnetic compassing has to estimate the absolute yaw angle of a walking person. Apart from these analysis, this article also proposes an improved HDE method called Magnetically-aided Improved Heuristic Drift Elimination (MiHDE), that is implemented over a PDR framework that uses foot-mounted inertial navigation with an extended Kalman filter (EKF). The EKF is fed with the MiHDE-estimated orientation error, gyro bias corrections, as well as the confidence over that corrections. We experimentally evaluated the performance of the proposed MiHDE-based PDR method, comparing it with the original HDE implementation. Results show that both methods perform very well in ideal orthogonal narrow-corridor buildings, and MiHDE outperforms HDE for non-ideal trajectories (e.g. curved paths) and also makes it robust against potential false dominant direction matchings.
Resumo:
We present a new method to accurately locate persons indoors by fusing inertial navigation system (INS) techniques with active RFID technology. A foot-mounted inertial measuring units (IMUs)-based position estimation method, is aided by the received signal strengths (RSSs) obtained from several active RFID tags placed at known locations in a building. In contrast to other authors that integrate IMUs and RSS with a loose Kalman filter (KF)-based coupling (by using the residuals of inertial- and RSS-calculated positions), we present a tight KF-based INS/RFID integration, using the residuals between the INS-predicted reader-to-tag ranges and the ranges derived from a generic RSS path-loss model. Our approach also includes other drift reduction methods such as zero velocity updates (ZUPTs) at foot stance detections, zero angular-rate updates (ZARUs) when the user is motionless, and heading corrections using magnetometers. A complementary extended Kalman filter (EKF), throughout its 15-element error state vector, compensates the position, velocity and attitude errors of the INS solution, as well as IMU biases. This methodology is valid for any kind of motion (forward, lateral or backward walk, at different speeds), and does not require an offline calibration for the user gait. The integrated INS+RFID methodology eliminates the typical drift of IMU-alone solutions (approximately 1% of the total traveled distance), resulting in typical positioning errors along the walking path (no matter its length) of approximately 1.5 m.
Resumo:
Direct Steam Generation (DSG) in Linear Fresnel (LF) solar collectors is being consolidated as a feasible technology for Concentrating Solar Power (CSP) plants. The competitiveness of this technology relies on the following main features: water as heat transfer fluid (HTF) in Solar Field (SF), obtaining high superheated steam temperatures and pressures at turbine inlet (500ºC and 90 bar), no heat tracing required to avoid HTF freezing, no HTF degradation, no environmental impacts, any heat exchanger between SF and Balance Of Plant (BOP), and low cost installation and maintenance. Regarding to LF solar collectors, were recently developed as an alternative to Parabolic Trough Collector (PTC) technology. The main advantages of LF are: the reduced collector manufacturing cost and maintenance, linear mirrors shapes versus parabolic mirror, fixed receiver pipes (no ball joints reducing leaking for high pressures), lower susceptibility to wind damages, and light supporting structures allowing reduced driving devices. Companies as Novatec, Areva, Solar Euromed, etc., are investing in LF DSG technology and constructing different pilot plants to demonstrate the benefits and feasibility of this solution for defined locations and conditions (Puerto Errado 1 and 2 in Murcia Spain, Lidellin Newcastle Australia, Kogran Creek in South West Queensland Australia, Kimberlina in Bakersfield California USA, Llo Solar in Pyrénées France,Dhursar in India,etc). There are several critical decisions that must be taken in order to obtain a compromise and optimization between plant performance, cost, and durability. Some of these decisions go through the SF design: proper thermodynamic operational parameters, receiver material selection for high pressures, phase separators and recirculation pumps number and location, pipes distribution to reduce the amount of tubes (reducing possible leaks points and transient time, etc.), etc. Attending to these aspects, the correct design parameters selection and its correct assessment are the main target for designing DSG LF power plants. For this purpose in the recent few years some commercial software tools were developed to simulatesolar thermal power plants, the most focused on LF DSG design are Thermoflex and System Advisor Model (SAM). Once the simulation tool is selected,it is made the study of the proposed SFconfiguration that constitutes the main innovation of this work, and also a comparison with one of the most typical state-of-the-art configuration. The transient analysis must be simulated with high detail level, mainly in the BOP during start up, shut down, stand by, and partial loads are crucial, to obtain the annual plant performance. An innovative SF configurationwas proposed and analyzed to improve plant performance. Finally it was demonstrated thermal inertia and BOP regulation mode are critical points in low sun irradiation day plant behavior, impacting in annual performance depending on power plant location.
Resumo:
Analysis of minimally invasive surgical videos is a powerful tool to drive new solutions for achieving reproducible training programs, objective and transparent assessment systems and navigation tools to assist surgeons and improve patient safety. This paper presents how video analysis contributes to the development of new cognitive and motor training and assessment programs as well as new paradigms for image-guided surgery.