12 resultados para Statistics|Electrical engineering|Computer science

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is focused on studying two issues: the “teamwork” generic competence and the “academic motivation”. Currently the professional profile of engineers has a strong component of teamwork. On the other hand, motivational profile of students determines their tendencies when they come to work in team, as well as their performance at work. In this context we suggest four hypotheses: (H1) students improve their teamwork capacity by specific training and carrying out a set of activities integrated into an active learning process; (H2) students with higher mastery motivation have better attitude towards team working; (H3) students with higher mastery motivation obtain better results in academic performance; and (H4) students show different motivation profiles in different circumstances: type of courses, teaching methodologies, different times of the learning process. This study was carried out with computer science engineering students from two Spanish universities. The first results point to an improvement in teamwork competence of students if they have previously received specific training in facets of that competence. Other results indicate that there is a correlation between the motivational profiles of students and their perception about teamwork competence. Finally, and contrary to the initial hypothesis, these profiles appear to not influence significantly the academic performance of students.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is aimed at discussing several issues related to the teamwork generic competence, motivational profiles and academic performance. In particular, we study the improvement of teamwork attitude, the predominant types of motivation in different contexts and some correlations among these three components of the learning process. The above-mentioned aspects are of great importance. Currently, the professional profile of engineers has a strong teamwork component and the motivational profile of students determines both their tendencies when they come to work as part of a team, as well as their performance at work. Taking these issues into consideration, we suggest four hypotheses: (H1) students improve their teamwork capacity through specific training and carrying out of a set of activities integrated into an active learning process; (H2) students with higher mastery motivation have a better attitude towards teamwork; (H3) students with different types of motivations reach different levels of academic performance; and (H4) students show different motivation profiles in different circumstances: type of courses, teaching methodologies, different times of the learning process. This study was carried out with Computer Science Engineering students from two Spanish universities. The first results point to an improvement in teamwork competence of students if they have previously received specific training in facets of that competence. Other results indicate that there is a correlation between the motivational profiles of students and their perception of teamwork competence. Finally, results point to a clear relationship between some kind of motivation and academic performance. In particular, four kinds of motivation are analyzed and students are classified into two groups according to them. After analyzing several marks obtained in compulsory courses, we perceive that those students that show higher motivation for avoiding failure obtain, in general, worse academic performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes the relationship among research collaboration, number of documents and number of citations of computer science research activity. It analyzes the number of documents and citations and how they vary by number of authors. They are also analyzed (according to author set cardinality) under different circumstances, that is, when documents are written in different types of collaboration, when documents are published in different document types, when documents are published in different computer science subdisciplines, and, finally, when documents are published by journals with different impact factor quartiles. To investigate the above relationships, this paper analyzes the publications listed in the Web of Science and produced by active Spanish university professors between 2000 and 2009, working in the computer science field. Analyzing all documents, we show that the highest percentage of documents are published by three authors, whereas single-authored documents account for the lowest percentage. By number of citations, there is no positive association between the author cardinality and citation impact. Statistical tests show that documents written by two authors receive more citations per document and year than documents published by more authors. In contrast, results do not show statistically significant differences between documents published by two authors and one author. The research findings suggest that international collaboration results on average in publications with higher citation rates than national and institutional collaborations. We also find differences regarding citation rates between journals and conferences, across different computer science subdisciplines and journal quartiles as expected. Finally, our impression is that the collaborative level (number of authors per document) will increase in the coming years, and documents published by three or four authors will be the trend in computer science literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En el presente trabajo se ha intentado obtener una visión, lo más exacta posible, de cuál ha sido el currículo académico seguido por los miembros de algunas de las universidades más prestigiosas en todo el mundo. Para ello se han tomado 36 centros, todos ellos impartiendo la misma titulación de "Electrical Engineering", situados entre los 50 más importantes del mundo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Situado en el límite entre Ingeniería, Informática y Biología, la mecánica computacional de las neuronas aparece como un nuevo campo interdisciplinar que potencialmente puede ser capaz de abordar problemas clínicos desde una perspectiva diferente. Este campo es multiescala por naturaleza, yendo desde la nanoescala (como, por ejemplo, los dímeros de tubulina) a la macroescala (como, por ejemplo, el tejido cerebral), y tiene como objetivo abordar problemas que son complejos, y algunas veces imposibles, de estudiar con medios experimentales. La modelización computacional ha sido ampliamente empleada en aplicaciones Neurocientíficas tan diversas como el crecimiento neuronal o la propagación de los potenciales de acción compuestos. Sin embargo, en la mayoría de los enfoques de modelización hechos hasta ahora, la interacción entre la célula y el medio/estímulo que la rodea ha sido muy poco explorada. A pesar de la tremenda importancia de esa relación en algunos desafíos médicos—como, por ejemplo, lesiones traumáticas en el cerebro, cáncer, la enfermedad del Alzheimer—un puente que relacione las propiedades electrofisiológicas-químicas y mecánicas desde la escala molecular al nivel celular todavía no existe. Con ese objetivo, esta investigación propone un marco computacional multiescala particularizado para dos escenarios respresentativos: el crecimiento del axón y el acomplamiento electrofisiológicomecánico de las neuritas. En el primer caso, se explora la relación entre los constituyentes moleculares del axón durante su crecimiento y sus propiedades mecánicas resultantes, mientras que en el último, un estímulo mecánico provoca deficiencias funcionales a nivel celular como consecuencia de sus alteraciones electrofisiológicas-químicas. La modelización computacional empleada en este trabajo es el método de las diferencias finitas, y es implementada en un nuevo programa llamado Neurite. Aunque el método de los elementos finitos es también explorado en parte de esta investigación, el método de las diferencias finitas tiene la flexibilidad y versatilidad necesaria para implementar mode los biológicos, así como la simplicidad matemática para extenderlos a simulaciones a gran escala con un coste computacional bajo. Centrándose primero en el efecto de las propiedades electrofisiológicas-químicas sobre las propiedades mecánicas, una versión adaptada de Neurite es desarrollada para simular la polimerización de los microtúbulos en el crecimiento del axón y proporcionar las propiedades mecánicas como función de la ocupación de los microtúbulos. Después de calibrar el modelo de crecimiento del axón frente a resultados experimentales disponibles en la literatura, las características mecánicas pueden ser evaluadas durante la simulación. Las propiedades mecánicas del axón muestran variaciones dramáticas en la punta de éste, donde el cono de crecimiento soporta las señales químicas y mecánicas. Bansándose en el conocimiento ganado con el modelo de diferencias finitas, y con el objetivo de ir de 1D a 3D, este esquema preliminar pero de una naturaleza innovadora allana el camino a futuros estudios con el método de los elementos finitos. Centrándose finalmente en el efecto de las propiedades mecánicas sobre las propiedades electrofisiológicas- químicas, Neurite es empleado para relacionar las cargas mecánicas macroscópicas con las deformaciones y velocidades de deformación a escala microscópica, y simular la propagación de la señal eléctrica en las neuritas bajo carga mecánica. Las simulaciones fueron calibradas con resultados experimentales publicados en la literatura, proporcionando, por tanto, un modelo capaz de predecir las alteraciones de las funciones electrofisiológicas neuronales bajo cargas externas dañinas, y uniendo lesiones mecánicas con las correspondientes deficiencias funcionales. Para abordar simulaciones a gran escala, aunque otras arquitecturas avanzadas basadas en muchos núcleos integrados (MICs) fueron consideradas, los solvers explícito e implícito se implementaron en unidades de procesamiento central (CPU) y unidades de procesamiento gráfico (GPUs). Estudios de escalabilidad fueron llevados acabo para ambas implementaciones mostrando resultados prometedores para casos de simulaciones extremadamente grandes con GPUs. Esta tesis abre la vía para futuros modelos mecánicos con el objetivo de unir las propiedades electrofisiológicas-químicas con las propiedades mecánicas. El objetivo general es mejorar el conocimiento de las comunidades médicas y de bioingeniería sobre la mecánica de las neuronas y las deficiencias funcionales que aparecen de los daños producidos por traumatismos mecánicos, como lesiones traumáticas en el cerebro, o enfermedades neurodegenerativas como la enfermedad del Alzheimer. ABSTRACT Sitting at the interface between Engineering, Computer Science and Biology, Computational Neuron Mechanics appears as a new interdisciplinary field potentially able to tackle clinical problems from a new perspective. This field is multiscale by nature, ranging from the nanoscale (e.g., tubulin dimers) to the macroscale (e.g., brain tissue), and aims at tackling problems that are complex, and sometime impossible, to study through experimental means. Computational modeling has been widely used in different Neuroscience applications as diverse as neuronal growth or compound action potential propagation. However, in the majority of the modeling approaches done in this field to date, the interactions between the cell and its surrounding media/stimulus have been rarely explored. Despite of the tremendous importance of such relationship in several medical challenges—e.g., traumatic brain injury (TBI), cancer, Alzheimer’s disease (AD)—a bridge between electrophysiological-chemical and mechanical properties of neurons from the molecular scale to the cell level is still lacking. To this end, this research proposes a multiscale computational framework particularized for two representative scenarios: axon growth and electrophysiological-mechanical coupling of neurites. In the former case, the relation between the molecular constituents of the axon during its growth and its resulting mechanical properties is explored, whereas in the latter, a mechanical stimulus provokes functional deficits at cell level as a consequence of its electrophysiological-chemical alterations. The computational modeling approach chosen in this work is the finite difference method (FDM), and was implemented in a new program called Neurite. Although the finite element method (FEM) is also explored as part of this research, the FDM provides the necessary flexibility and versatility to implement biological models, as well as the mathematical simplicity to extend them to large scale simulations with a low computational cost. Focusing first on the effect of electrophysiological-chemical properties on the mechanical proper ties, an adaptation of Neurite was developed to simulate microtubule polymerization in axonal growth and provide the axon mechanical properties as a function of microtubule occupancy. After calibrating the axon growth model against experimental results available in the literature, the mechanical characteristics can be tracked during the simulation. The axon mechanical properties show dramatic variations at the tip of the axon, where the growth cone supports the chemical and mechanical signaling. Based on the knowledge gained from the FDM scheme, and in order to go from 1D to 3D, this preliminary yet novel scheme paves the road for future studies with FEM. Focusing then on the effect of mechanical properties on the electrophysiological-chemical properties, Neurite was used to relate macroscopic mechanical loading to microscopic strains and strain rates, and simulate the electrical signal propagation along neurites under mechanical loading. The simulations were calibrated against experimental results published in the literature, thus providing a model able to predict the alteration of neuronal electrophysiological function under external damaging load, and linking mechanical injuries to subsequent acute functional deficits. To undertake large scale simulations, although other state-of-the-art architectures based on many integrated cores (MICs) were considered, the explicit and implicit solvers were implemented for central processing units (CPUs) and graphics processing units (GPUs). Scalability studies were done for both implementations showing promising results for extremely large scale simulations with GPUs. This thesis opens the avenue for future mechanical modeling approaches aimed at linking electrophysiological- chemical properties to mechanical properties. Its overarching goal is to enhance the bioengineering and medical communities knowledge on neuronal mechanics and functional deficits arising from damages produced by direct mechanical insults, such as TBI, or neurodegenerative evolving illness, such as AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the beginning of the 90s, ontology development was similar to an art: ontology developers did not have clear guidelines on how to build ontologies but only some design criteria to be followed. Work on principles, methods and methodologies, together with supporting technologies and languages, made ontology development become an engineering discipline, the so-called Ontology Engineering. Ontology Engineering refers to the set of activities that concern the ontology development process and the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites and languages that support them. Thanks to the work done in the Ontology Engineering field, the development of ontologies within and between teams has increased and improved, as well as the possibility of reusing ontologies in other developments and in final applications. Currently, ontologies are widely used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b) applications related to knowledge management, natural language processing, e-commerce, intelligent information integration, information retrieval, database design and integration, bio-informatics, education, and (c) the Semantic Web, the Semantic Grid, and the Linked Data initiative. In this paper, we provide an overview of Ontology Engineering, mentioning the most outstanding and used methodologies, languages, and tools for building ontologies. In addition, we include some words on how all these elements can be used in the Linked Data initiative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Universidad Politécnica of Madrid (UPM) includes schools and faculties that were for engineering degrees, architecture and computer science, that are now in a quick EEES Bolonia Plan metamorphosis getting into degrees, masters and doctorate structures. They are focused towards action in machines, constructions, enterprises, that are subjected to machines, human and environment created risks. These are present in actions such as use loads, wind, snow, waves, flows, earthquakes, forces and effects in machines, vehicles behavior, chemical effects, and other environmental factors including effects of crops, cattle and beasts, forests, and varied essential economic and social disturbances. Emphasis is for authors in this session more about risks of natural origin, such as for hail, winds, snow or waves that are not exactly known a priori, but that are often considered with statistical expected distributions giving extreme values for convenient return periods. These distributions are known from measures in time, statistic of extremes and models about hazard scenarios and about responses of man made constructions or devices. In each engineering field theories were built about hazards scenarios and how to cover for important risks. Engineers must get that the systems they handle, such as vehicles, machines, firms or agro lands or forests, obtain production with enough safety for persons and with decent economic results in spite of risks. For that risks must be considered in planning, in realization and in operation, and safety margins must be taken but at a reasonable cost. That is a small level of risks will often remain, due to limitations in costs or because of due to strange hazards, and maybe they will be covered by insurance in cases such as in transport with cars, ships or aircrafts, in agro for hail, or for fire in houses or in forests. These and other decisions about quality, security for men or about business financial risks are sometimes considered with Decision Theories models, using often tools from Statistics or operational Research. The authors have done and are following field surveys about risk consideration in the careers in UPM, making deep analysis of curricula taking into account the new structures of degrees in the EEES Bolonia Plan, and they have considered the risk structures offered by diverse schools of Decision theories. That gives an aspect of the needs and uses, and recommendations about improving in the teaching about risk, that may include special subjects especially oriented for each career, school or faculty, so as to be recommended to be included into the curricula, including an elaboration and presentation format using a multi-criteria decision model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este keynote, la Prof. Juristo describe el paradigma experimental y cómo podría aplicarse a la ingeniería del software, destacando los desafíos de su aplicación y los logros conseguidos hasta el momento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major challenge in the engineering of complex and critical systems is the management of change, both in the system and in its operational environment. Due to the growing of complexity in systems, new approaches on autonomy must be able to detect critical changes and avoid their progress towards undesirable states. We are searching for methods to build systems that can tune the adaptability protocols. New mechanisms that use system-wellness requirements to reduce the influence of the outer domain and transfer the control of uncertainly to the inner one. Under the view of cognitive systems, biological emotions suggests a strategy to configure value-based systems to use semantic self-representations of the state. A method inspired by emotion theories to causally connect to the inner domain of the system and its objectives of wellness, focusing on dynamically adapting the system to avoid the progress of critical states. This method shall endow the system with a transversal mechanism to monitor its inner processes, detecting critical states and managing its adaptivity in order to maintain the wellness goals. The paper describes the current vision produced by this work-in-progress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major challenge in the engineering of complex and critical systems is the management of change, both in the system and in its operational environment. Due to the growing of complexity in systems, new approaches on autonomy must be able to detect critical changes and avoid their progress towards undesirable states. We are searching for methods to build systems that can tune the adaptability protocols. New mechanisms that use system-wellness requirements to reduce the influence of the outer domain and transfer the control of uncertainly to the inner one. Under the view of cognitive systems, biological emotions suggests a strategy to configure value-based systems to use semantic self-representations of the state. A method inspired by emotion theories to causally connect to the inner domain of the system and its objectives of wellness, focusing on dynamically adapting the system to avoid the progress of critical states. This method shall endow the system with a transversal mechanism to monitor its inner processes, detecting critical states and managing its adaptivity in order to maintain the wellness goals. The paper describes the current vision produced by this work-in-progress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emotion is generally argued to be an influence on the behavior of life systems, largely concerning flexibility and adaptivity. The way in which life systems acts in response to a particular situations of the environment, has revealed the decisive and crucial importance of this feature in the success of behaviors. And this source of inspiration has influenced the way of thinking artificial systems. During the last decades, artificial systems have undergone such an evolution that each day more are integrated in our daily life. They have become greater in complexity, and the subsequent effects are related to an increased demand of systems that ensure resilience, robustness, availability, security or safety among others. All of them questions that raise quite a fundamental challenges in control design. This thesis has been developed under the framework of the Autonomous System project, a.k.a the ASys-Project. Short-term objectives of immediate application are focused on to design improved systems, and the approaching of intelligence in control strategies. Besides this, long-term objectives underlying ASys-Project concentrate on high order capabilities such as cognition, awareness and autonomy. This thesis is placed within the general fields of Engineery and Emotion science, and provides a theoretical foundation for engineering and designing computational emotion for artificial systems. The starting question that has grounded this thesis aims the problem of emotion--based autonomy. And how to feedback systems with valuable meaning has conformed the general objective. Both the starting question and the general objective, have underlaid the study of emotion, the influence on systems behavior, the key foundations that justify this feature in life systems, how emotion is integrated within the normal operation, and how this entire problem of emotion can be explained in artificial systems. By assuming essential differences concerning structure, purpose and operation between life and artificial systems, the essential motivation has been the exploration of what emotion solves in nature to afterwards analyze analogies for man--made systems. This work provides a reference model in which a collection of entities, relationships, models, functions and informational artifacts, are all interacting to provide the system with non-explicit knowledge under the form of emotion-like relevances. This solution aims to provide a reference model under which to design solutions for emotional operation, but related to the real needs of artificial systems. The proposal consists of a multi-purpose architecture that implement two broad modules in order to attend: (a) the range of processes related to the environment affectation, and (b) the range or processes related to the emotion perception-like and the higher levels of reasoning. This has required an intense and critical analysis beyond the state of the art around the most relevant theories of emotion and technical systems, in order to obtain the required support for those foundations that sustain each model. The problem has been interpreted and is described on the basis of AGSys, an agent assumed with the minimum rationality as to provide the capability to perform emotional assessment. AGSys is a conceptualization of a Model-based Cognitive agent that embodies an inner agent ESys, the responsible of performing the emotional operation inside of AGSys. The solution consists of multiple computational modules working federated, and aimed at conforming a mutual feedback loop between AGSys and ESys. Throughout this solution, the environment and the effects that might influence over the system are described as different problems. While AGSys operates as a common system within the external environment, ESys is designed to operate within a conceptualized inner environment. And this inner environment is built on the basis of those relevances that might occur inside of AGSys in the interaction with the external environment. This allows for a high-quality separate reasoning concerning mission goals defined in AGSys, and emotional goals defined in ESys. This way, it is provided a possible path for high-level reasoning under the influence of goals congruence. High-level reasoning model uses knowledge about emotional goals stability, letting this way new directions in which mission goals might be assessed under the situational state of this stability. This high-level reasoning is grounded by the work of MEP, a model of emotion perception that is thought as an analogy of a well-known theory in emotion science. The work of this model is described under the operation of a recursive-like process labeled as R-Loop, together with a system of emotional goals that are assumed as individual agents. This way, AGSys integrates knowledge that concerns the relation between a perceived object, and the effect which this perception induces on the situational state of the emotional goals. This knowledge enables a high-order system of information that provides the sustain for a high-level reasoning. The extent to which this reasoning might be approached is just delineated and assumed as future work. This thesis has been studied beyond a long range of fields of knowledge. This knowledge can be structured into two main objectives: (a) the fields of psychology, cognitive science, neurology and biological sciences in order to obtain understanding concerning the problem of the emotional phenomena, and (b) a large amount of computer science branches such as Autonomic Computing (AC), Self-adaptive software, Self-X systems, Model Integrated Computing (MIC) or the paradigm of models@runtime among others, in order to obtain knowledge about tools for designing each part of the solution. The final approach has been mainly performed on the basis of the entire acquired knowledge, and described under the fields of Artificial Intelligence, Model-Based Systems (MBS), and additional mathematical formalizations to provide punctual understanding in those cases that it has been required. This approach describes a reference model to feedback systems with valuable meaning, allowing for reasoning with regard to (a) the relationship between the environment and the relevance of the effects on the system, and (b) dynamical evaluations concerning the inner situational state of the system as a result of those effects. And this reasoning provides a framework of distinguishable states of AGSys derived from its own circumstances, that can be assumed as artificial emotion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last three decades, FPGA technology has quickly evolved to become a major subject of research in computer and electrical engineering as it has been identified as a powerful alternative for creating highly efficient computing systems. FPGA devices offer substantial performance improvements when compared against traditional processing architectures via custom design and reconfiguration capabilities.