9 resultados para Statistical analysis.

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pragmatism is the leading motivation of regularization. We can understand regularization as a modification of the maximum-likelihood estimator so that a reasonable answer could be given in an unstable or ill-posed situation. To mention some typical examples, this happens when fitting parametric or non-parametric models with more parameters than data or when estimating large covariance matrices. Regularization is usually used, in addition, to improve the bias-variance tradeoff of an estimation. Then, the definition of regularization is quite general, and, although the introduction of a penalty is probably the most popular type, it is just one out of multiple forms of regularization. In this dissertation, we focus on the applications of regularization for obtaining sparse or parsimonious representations, where only a subset of the inputs is used. A particular form of regularization, L1-regularization, plays a key role for reaching sparsity. Most of the contributions presented here revolve around L1-regularization, although other forms of regularization are explored (also pursuing sparsity in some sense). In addition to present a compact review of L1-regularization and its applications in statistical and machine learning, we devise methodology for regression, supervised classification and structure induction of graphical models. Within the regression paradigm, we focus on kernel smoothing learning, proposing techniques for kernel design that are suitable for high dimensional settings and sparse regression functions. We also present an application of regularized regression techniques for modeling the response of biological neurons. Supervised classification advances deal, on the one hand, with the application of regularization for obtaining a na¨ıve Bayes classifier and, on the other hand, with a novel algorithm for brain-computer interface design that uses group regularization in an efficient manner. Finally, we present a heuristic for inducing structures of Gaussian Bayesian networks using L1-regularization as a filter. El pragmatismo es la principal motivación de la regularización. Podemos entender la regularización como una modificación del estimador de máxima verosimilitud, de tal manera que se pueda dar una respuesta cuando la configuración del problema es inestable. A modo de ejemplo, podemos mencionar el ajuste de modelos paramétricos o no paramétricos cuando hay más parámetros que casos en el conjunto de datos, o la estimación de grandes matrices de covarianzas. Se suele recurrir a la regularización, además, para mejorar el compromiso sesgo-varianza en una estimación. Por tanto, la definición de regularización es muy general y, aunque la introducción de una función de penalización es probablemente el método más popular, éste es sólo uno de entre varias posibilidades. En esta tesis se ha trabajado en aplicaciones de regularización para obtener representaciones dispersas, donde sólo se usa un subconjunto de las entradas. En particular, la regularización L1 juega un papel clave en la búsqueda de dicha dispersión. La mayor parte de las contribuciones presentadas en la tesis giran alrededor de la regularización L1, aunque también se exploran otras formas de regularización (que igualmente persiguen un modelo disperso). Además de presentar una revisión de la regularización L1 y sus aplicaciones en estadística y aprendizaje de máquina, se ha desarrollado metodología para regresión, clasificación supervisada y aprendizaje de estructura en modelos gráficos. Dentro de la regresión, se ha trabajado principalmente en métodos de regresión local, proponiendo técnicas de diseño del kernel que sean adecuadas a configuraciones de alta dimensionalidad y funciones de regresión dispersas. También se presenta una aplicación de las técnicas de regresión regularizada para modelar la respuesta de neuronas reales. Los avances en clasificación supervisada tratan, por una parte, con el uso de regularización para obtener un clasificador naive Bayes y, por otra parte, con el desarrollo de un algoritmo que usa regularización por grupos de una manera eficiente y que se ha aplicado al diseño de interfaces cerebromáquina. Finalmente, se presenta una heurística para inducir la estructura de redes Bayesianas Gaussianas usando regularización L1 a modo de filtro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Operational Modal Analysis (OMA) of a structure, the data acquisition process may be repeated many times. In these cases, the analyst has several similar records for the modal analysis of the structure that have been obtained at di�erent time instants (multiple records). The solution obtained varies from one record to another, sometimes considerably. The differences are due to several reasons: statistical errors of estimation, changes in the external forces (unmeasured forces) that modify the output spectra, appearance of spurious modes, etc. Combining the results of the di�erent individual analysis is not straightforward. To solve the problem, we propose to make the joint estimation of the parameters using all the records. This can be done in a very simple way using state space models and computing the estimates by maximum-likelihood. The method provides a single result for the modal parameters that combines optimally all the records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computing the modal parameters of large structures in Operational Modal Analysis often requires to process data from multiple non simultaneously recorded setups of sensors. These setups share some sensors in common, the so-called reference sensors that are fixed for all the measurements, while the other sensors are moved from one setup to the next. One possibility is to process the setups separately what result in different modal parameter estimates for each setup. Then the reference sensors are used to merge or glue the different parts of the mode shapes to obtain global modes, while the natural frequencies and damping ratios are usually averaged. In this paper we present a state space model that can be used to process all setups at once so the global mode shapes are obtained automatically and subsequently only a value for the natural frequency and damping ratio of each mode is computed. We also present how this model can be estimated using maximum likelihood and the Expectation Maximization algorithm. We apply this technique to real data measured at a footbridge.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The geometrical factors defining an adhesive joint are of great importance as its design greatly conditions the performance of the bonding. One of the most relevant geometrical factors is the thickness of the adhesive as it decisively influences the mechanical properties of the bonding and has a clear economic impact on the manufacturing processes or long runs. The traditional mechanical joints (riveting, welding, etc.) are characterised by a predictable performance, and are very reliable in service conditions. Thus, structural adhesive joints will only be selected in industrial applications demanding mechanical requirements and adverse environmental conditions if the suitable reliability (the same or higher than the mechanical joints) is guaranteed. For this purpose, the objective of this paper is to analyse the influence of the adhesive thickness on the mechanical behaviour of the joint and, by means of a statistical analysis based on Weibull distribution, propose the optimum thickness for the adhesive combining the best mechanical performance and high reliability. This procedure, which is applicable without a great deal of difficulty to other joints and adhesives, provides a general use for a more reliable use of adhesive bondings and, therefore, for a better and wider use in the industrial manufacturing processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Concession contracts in highways often include some kind of clauses (for example, a minimum traffic guarantee) that allow for better management of the business risks. The value of these clauses may be important and should be added to the total value of the concession. However, in these cases, traditional valuation techniques, like the NPV (net present value) of the project, are insufficient. An alternative methodology for the valuation of highway concession is one based on the real options approach. This methodology is generally built on the assumption of the evolution of traffic volume as a GBM (geometric Brownian motion), which is the hypothesis analyzed in this paper. First, a description of the methodology used for the analysis of the existence of unit roots (i.e., the hypothesis of non-stationarity) is provided. The Dickey-Fuller approach has been used, which is the most common test for this kind of analysis. Then this methodology is applied to perform a statistical analysis of traffic series in Spanish toll highways. For this purpose, data on the AADT (annual average daily traffic) on a set of highways have been used. The period of analysis is around thirty years in most cases. The main outcome of the research is that the hypothesis that traffic volume follows a GBM process in Spanish toll highways cannot be rejected. This result is robust, and therefore it can be used as a starting point for the application of the real options theory to assess toll highway concessions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Análisis de precisión en modelos digitales de elevación globales. ABSTRACT: Terrain-Based Analysis results in derived products from an input DEM and these products are needed to perform various analyses. To efficiently use these products in decision-making, their accuracies must be estimated systematically. This paper proposes a procedure to assess the accuracy of these derived products, by calculating the accuracy of the slope dataset and its significance, taking as an input the accuracy of the DEM. Based on the output of previously published research on modeling the relative accuracy of a DEM, specifically ASTER and SRTM DEMs with Lebanon coverage as the area of study, analysis have showed that ASTER has a low significance in the majority of the area where only 2% of the modeled terrain has 50% or more significance. On the other hand, SRTM showed a better significance, where 37% of the modeled terrain has 50% or more significance. Statistical analysis deduced that the accuracy of the slope dataset, calculated on a cell-by-cell basis, is highly correlated to the accuracy of the input DEM. However, this correlation becomes lower between the slope accuracy and the slope significance, whereas it becomes much higher between the modeled slope and the slope significance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Actualmente la optimization de la calidad de experiencia (Quality of Experience- QoE) de HTTP Adaptive Streaming (HAS) de video recibe una atención creciente. Este incremento de interés proviene fundamentalmente de las carencias de las soluciones actuales HAS, que, al no ser QoE-driven, no incluyen la percepción de la calidad de los usuarios finales como una parte integral de la lógica de adaptación. Por lo tanto, la obtención de información de referencia fiable en QoE en HAS presenta retos importantes, ya que las metodologías de evaluación subjetiva de la calidad de vídeo propuestas en las normas actuales no son adecuadas para tratar con la variación temporal de la calidad que es consustancial de HAS. Esta tesis investiga la influencia de la adaptación dinámica en la calidad de la transmisión de vídeo considerando métodos de evaluación subjetiva. Tras un estudio exhaustivo del estado del arte en la evaluación subjetiva de QoE en HAS, se han resaltado los retos asociados y las líneas de investigación abiertas. Como resultado, se han seleccionado dos líneas principales de investigación: el análisis del impacto en la QoE de los parámetros de las técnicas de adaptación y la investigación de las metodologías de prueba subjetiva adecuada para evaluación de QoE en HAS. Se han llevado a cabo un conjunto de experimentos de laboratorio para investigar las cuestiones planteadas mediante la utilización de diferentes metodologáas para pruebas subjetivas. El análisis estadístico muestra que no son robustas todas las suposiciones y reivindicaciones de las referencias analizadas, en particular en lo que respecta al impacto en la QoE de la frecuencia de las variaciones de calidad, de las adaptaciones suaves o abruptas y de las oscilaciones de calidad. Por otra parte, nuestros resultados confirman la influencia de otros parámetros, como la longitud de los segmentos de vídeo y la amplitud de las oscilaciones de calidad. Los resultados también muestran que tomar en consideración las características objetivas de los contenidos puede ser beneficioso para la mejora de la QoE en HAS. Además, todos los resultados han sido validados mediante extensos análisis experimentales que han incluido estudio tanto en otros laboratorios como en crowdsourcing Por último, sobre los aspectos metodológicos de las pruebas subjetivas de QoE, se ha realizado la comparación entre los resultados experimentales obtenidos a partir de un método estandarizado basado en estímulos cortos (ACR) y un método semi continuo (desarrollado para la evaluación de secuencias prolongadas de vídeo). A pesar de algunas diferencias, el resultado de los análisis estadísticos no muestra ningún efecto significativo de la metodología de prueba. Asimismo, aunque se percibe la influencia de la presencia de audio en la evaluación de degradaciones del vídeo, no se han encontrado efectos estadísticamente significativos de dicha presencia. A partir de la ausencia de influencia del método de prueba y de la presencia de audio, se ha realizado un análisis adicional sobre el impacto de realizar comparaciones estadísticas múltiples en niveles estadísticos de importancia que aumentan la probabilidad de los errores de tipo-I (falsos positivos). Nuestros resultados muestran que, para obtener un efectos sólido en el análisis estadístico de los resultados subjetivos, es necesario aumentar el número de sujetos de las pruebas claramente por encima de los tamaños de muestras propuestos por las normas y recomendaciones actuales. ABSTRACT Optimizing the Quality of Experience (QoE) of HTTP adaptive video streaming (HAS) is receiving increasing attention nowadays. The growth of interest is mainly caused by the fact that current HAS solutions are not QoE-driven, i.e. end-user quality perception is not integral part of the adaptation logic. However, obtaining the necessary reliable ground truths on HAS QoE faces substantial challenges, since the subjective video quality assessment methodologies as proposed by current standards are not well-suited for dealing with the time-varying quality properties that are characteristic for HAS. This thesis investigates the influence of dynamic quality adaptation on the QoE of streaming video by means of subjective evaluation approaches. Based on a comprehensive survey of related work on subjective HAS QoE assessment, the related challenges and open research questions are highlighted and discussed. As a result, two main research directions are selected for further investigation: analysis of the QoE impact of different technical adaptation parameters, and investigation of testing methodologies suitable for HAS QoE evaluation. In order to investigate related research issues and questions, a set of laboratory experiments have been conducted using different subjective testing methodologies. Our statistical analysis demonstrates that not all assumptions and claims reported in the literature are robust, particularly as regards the QoE impact of switching frequency, smooth vs. abrupt switching, and quality oscillation. On the other hand, our results confirm the influence of some other parameters such as chunk length and switching amplitude on perceived quality. We also show that taking the objective characteristics of the content into account can be beneficial to improve the adaptation viewing experience. In addition, all aforementioned findings are validated by means of an extensive cross-experimental analysis that involves external laboratory and crowdsourcing studies. Finally, to address the methodological aspects of subjective QoE testing, a comparison between the experimental results obtained from a (short stimuli-based) ACR standardized method and a semi-continuous method (developed for assessment of long video sequences) has been performed. In spite of observation of some differences, the result of statistical analysis does not show any significant effect of testing methodology. Similarly, although the influence of audio presence on evaluation of video-related degradations is perceived, no statistically significant effect of audio presence could be found. Motivating by this finding (no effect of testing method and audio presence), a subsequent analysis has been performed investigating the impact of performing multiple statistical comparisons on statistical levels of significance which increase the likelihood of Type-I errors (false positives). Our results show that in order to obtain a strong effect from the statistical analysis of the subjective results, it is necessary to increase the number of test subjects well beyond the sample sizes proposed by current quality assessment standards and recommendations.