3 resultados para Splicing variant

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: In this paper we propose a generalization of the accepting splicingsystems introduced in Mitrana et al. (Theor Comput Sci 411:2414?2422,2010). More precisely, the input word is accepted as soon as a permittingword is obtained provided that no forbidding word has been obtained sofar, otherwise it is rejected. Note that in the new variant of acceptingsplicing system the input word is rejected if either no permitting word isever generated (like in Mitrana et al. in Theor Comput Sci 411:2414?2422,2010) or a forbidding word has been generated and no permitting wordhad been generated before. We investigate the computational power ofthe new variants of accepting splicing systems and the interrelationshipsamong them. We show that the new condition strictly increases thecomputational power of accepting splicing systems. Although there areregular languages that cannot be accepted by any of the splicing systemsconsidered here, the new variants can accept non-regular and even non-context-free languages, a situation that is not very common in the case of(extended) finite splicing systems without additional restrictions. We alsoshow that the smallest class of languages out of the four classes definedby accepting splicing systems is strictly included in the class of context-free languages. Solutions to a few decidability problems are immediatelyderived from the proof of this result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a condition for rejecting the input word by an accepting splicing system which is defined by a finite set of forbidding words. We investigate the computational power of the new variants of accepting splicing systems. We show that the new condition strictly increases the computational power of accepting splicing systems. Rather surprisingly, accepting splicing systems considered here can accept non-regular languages, a situation that has never occurred in the case of (extended) finite splicing systems without additional restrictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the model named Accepting Networks of Evolutionary Processors as NP-problem solver inspired in the biological DNA operations. A processor has a rules set, splicing rules in this model,an object multiset and a filters set. Rules can be applied in parallel since there exists a large number of copies of objects in the multiset. Processors can form a graph in order to solve a given problem. This paper shows the network configuration in order to solve the SAT problem using linear resources and time. A rule representation arquitecture in distributed environments can be easily implemented using these networks of processors, such as decision support systems, as shown in the paper.