3 resultados para Speculative attacks
em Universidad Politécnica de Madrid
Resumo:
This report addresses speculative parallelism (the assignment of spare processing resources to tasks which are not known to be strictly required for the successful completion of a computation) at the user and application level. At this level, the execution of a program is seen as a (dynamic) tree —a graph, in general. A solution for a problem is a traversal of this graph from the initial state to a node known to be the answer. Speculative parallelism then represents the assignment of resources to múltiple branches of this graph even if they are not positively known to be on the path to a solution. In highly non-deterministic programs the branching factor can be very high and a naive assignment will very soon use up all the resources. This report presents work assignment strategies other than the usual depth-first and breadth-first. Instead, best-first strategies are used. Since their definition is application-dependent, the application language contains primitives that allow the user (or application programmer) to a) indícate when intelligent OR-parallelism should be used; b) provide the functions that define "best," and c) indícate when to use them. An abstract architecture enables those primitives to perform the search in a "speculative" way, using several processors, synchronizing them, killing the siblings of the path leading to the answer, etc. The user is freed from worrying about these interactions. Several search strategies are proposed and their implementation issues are addressed. "Armageddon," a global pruning method, is introduced, together with both a software and a hardware implementation for it. The concepts exposed are applicable to áreas of Artificial Intelligence such as extensive expert systems, planning, game playing, and in general to large search problems. The proposed strategies, although showing promise, have not been evaluated by simulation or experimentation.
Resumo:
As wireless sensor networks are usually deployed in unattended areas, security policies cannot be updated in a timely fashion upon identification of new attacks. This gives enough time for attackers to cause significant damage. Thus, it is of great importance to provide protection from unknown attacks. However, existing solutions are mostly concentrated on known attacks. On the other hand, mobility can make the sensor network more resilient to failures, reactive to events, and able to support disparate missions with a common set of sensors, yet the problem of security becomes more complicated. In order to address the issue of security in networks with mobile nodes, we propose a machine learning solution for anomaly detection along with the feature extraction process that tries to detect temporal and spatial inconsistencies in the sequences of sensed values and the routing paths used to forward these values to the base station. We also propose a special way to treat mobile nodes, which is the main novelty of this work. The data produced in the presence of an attacker are treated as outliers, and detected using clustering techniques. These techniques are further coupled with a reputation system, in this way isolating compromised nodes in timely fashion. The proposal exhibits good performances at detecting and confining previously unseen attacks, including the cases when mobile nodes are compromised.
Resumo:
Early propagation effect (EPE) is a critical problem in conventional dual-rail logic implementations against Side Channel Attacks (SCAs). Among previous EPE-resistant architectures, PA-DPL logic offers EPE-free capability at relatively low cost. However, its separate dual core structure is a weakness when facing concentrated EM attacks where a tiny EM probe can be precisely positioned closer to one of the two cores. In this paper, we present an PA-DPL dual-core interleaved structure to strengthen resistance against sophisticated EM attacks on Xilinx FPGA implementations. The main merit of the proposed structure is that every two routing in each signal pair are kept identical even the dual cores are interleaved together. By minimizing the distance between the complementary routings and instances of both cores, even the concentrated EM measurement cannot easily distinguish the minor EM field unbalance. In PA- DPL, EPE is avoided by compressing the evaluation phase to a small portion of the clock period, therefore, the speed is inevitably limited. Regarding this, we made an improvement to extend the duty cycle of evaluation phase to more than 40 percent, yielding a larger maximum working frequency. The detailed design flow is also presented. We validate the security improvement against EM attack by implementing a simplified AES co-processor in Virtex-5 FPGA.