8 resultados para Spectral differential imaging
em Universidad Politécnica de Madrid
Resumo:
Las aplicaciones de la teledetección al seguimiento de lo que ocurre en la superficie terrestre se han ido multiplicando y afinando con el lanzamiento de nuevos sensores por parte de las diferentes agencias espaciales. La necesidad de tener información actualizada cada poco tiempo y espacialmente homogénea, ha provocado el desarrollo de nuevos programas como el Earth Observing System (EOS) de la National Aeronautics and Space Administration (NASA). Uno de los sensores que incorpora el buque insignia de ese programa, el satélite TERRA, es el Multi-angle Imaging SpectroRadiometer (MISR), diseñado para capturar información multiangular de la superficie terrestre. Ya desde los años 1970, se conocía que la reflectancia de las diversas ocupaciones y usos del suelo variaba en función del ángulo de observación y de iluminación, es decir, que eran anisotrópicas. Tal variación estaba además relacionada con la estructura tridimensional de tales ocupaciones, por lo que se podía aprovechar tal relación para obtener información de esa estructura, más allá de la que pudiera proporcionar la información meramente espectral. El sensor MISR incorpora 9 cámaras a diferentes ángulos para capturar 9 imágenes casi simultáneas del mismo punto, lo que permite estimar con relativa fiabilidad la respuesta anisotrópica de la superficie terrestre. Varios trabajos han demostrado que se pueden estimar variables relacionadas con la estructura de la vegetación con la información que proporciona MISR. En esta Tesis se ha realizado una primera aplicación a la Península Ibérica, para comprobar su utilidad a la hora de estimar variables de interés forestal. En un primer paso se ha analizado la variabilidad temporal que se produce en los datos, debido a los cambios en la geometría de captación, es decir, debido a la posición relativa de sensores y fuente de iluminación, que en este caso es el Sol. Se ha comprobado cómo la anisotropía es mayor desde finales de otoño hasta principios de primavera debido a que la posición del Sol es más cercana al plano de los sensores. También se ha comprobado que los valores máximo y mínimo se van desplazando temporalmente entre el centro y el extremo angular. En la caracterización multiangular de ocupaciones del suelo de CORINE Land Cover que se ha realizado, se puede observar cómo la forma predominante en las imágenes con el Sol más alto es convexa con un máximo en la cámara más cercana a la fuente de iluminación. Sin embargo, cuando el Sol se encuentra mucho más bajo, ese máximo es muy externo. Por otra parte, los datos obtenidos en verano son mucho más variables para cada ocupación que los de noviembre, posiblemente debido al aumento proporcional de las zonas en sombra. Para comprobar si la información multiangular tiene algún efecto en la obtención de imágenes clasificadas según ocupación y usos del suelo, se han realizado una serie de clasificaciones variando la información utilizada, desde sólo multiespectral, a multiangular y multiespectral. Los resultados muestran que, mientras para las clasificaciones más genéricas la información multiangular proporciona los peores resultados, a medida que se amplían el número de clases a obtener tal información mejora a lo obtenido únicamente con información multiespectral. Por otra parte, se ha realizado una estimación de variables cuantitativas como la fracción de cabida cubierta (Fcc) y la altura de la vegetación a partir de información proporcionada por MISR a diferentes resoluciones. En el valle de Alcudia (Ciudad Real) se ha estimado la fracción de cabida cubierta del arbolado para un píxel de 275 m utilizando redes neuronales. Los resultados muestran que utilizar información multiespectral y multiangular puede mejorar casi un 20% las estimaciones realizadas sólo con datos multiespectrales. Además, las relaciones obtenidas llegan al 0,7 de R con errores inferiores a un 10% en Fcc, siendo éstos mucho mejores que los obtenidos con el producto elaborado a partir de datos multiespectrales del sensor Moderate Resolution Imaging Spectroradiometer (MODIS), también a bordo de Terra, para la misma variable. Por último, se ha estimado la fracción de cabida cubierta y la altura efectiva de la vegetación para 700.000 ha de la provincia de Murcia, con una resolución de 1.100 m. Los resultados muestran la relación existente entre los datos espectrales y los multiangulares, obteniéndose coeficientes de Spearman del orden de 0,8 en el caso de la fracción de cabida cubierta de la vegetación, y de 0,4 en el caso de la altura efectiva. Las estimaciones de ambas variables con redes neuronales y diversas combinaciones de datos, arrojan resultados con R superiores a 0,85 para el caso del grado de cubierta vegetal, y 0,6 para la altura efectiva. Los parámetros multiangulares proporcionados en los productos elaborados con MISR a 1.100 m, no obtienen buenos resultados por sí mismos pero producen cierta mejora al incorporarlos a la información espectral. Los errores cuadráticos medios obtenidos son inferiores a 0,016 para la Fcc de la vegetación en tanto por uno, y 0,7 m para la altura efectiva de la misma. Regresiones geográficamente ponderadas muestran además que localmente se pueden obtener mejores resultados aún mejores, especialmente cuando hay una mayor variabilidad espacial de las variables estimadas. En resumen, la utilización de los datos proporcionados por MISR ofrece una prometedora vía de mejora de resultados en la media-baja resolución, tanto para la clasificación de imágenes como para la obtención de variables cuantitativas de la estructura de la vegetación. ABSTRACT Applications of remote sensing for monitoring what is happening on the land surface have been multiplied and refined with the launch of new sensors by different Space Agencies. The need of having up to date and spatially homogeneous data, has led to the development of new programs such as the Earth Observing System (EOS) of the National Aeronautics and Space Administration (NASA). One of the sensors incorporating the flagship of that program, the TERRA satellite, is Multi-angle Imaging Spectroradiometer (MISR), designed to capture the multi-angle information of the Earth's surface. Since the 1970s, it was known that the reflectance of various land covers and land uses varied depending on the viewing and ilumination angles, so they are anisotropic. Such variation was also related to the three dimensional structure of such covers, so that one could take advantage of such a relationship to obtain information from that structure, beyond which spectral information could provide. The MISR sensor incorporates 9 cameras at different angles to capture 9 almost simultaneous images of the same point, allowing relatively reliable estimates of the anisotropic response of the Earth's surface. Several studies have shown that we can estimate variables related to the vegetation structure with the information provided by this sensor, so this thesis has made an initial application to the Iberian Peninsula, to check their usefulness in estimating forest variables of interest. In a first step we analyzed the temporal variability that occurs in the data, due to the changes in the acquisition geometry, i.e. the relative position of sensor and light source, which in this case is the Sun. It has been found that the anisotropy is greater from late fall through early spring due to the Sun's position closer to the plane of the sensors. It was also found that the maximum and minimum values are displaced temporarily between the center and the ends. In characterizing CORINE Land Covers that has been done, one could see how the predominant form in the images with the highest sun is convex with a maximum in the camera closer to the light source. However, when the sun is much lower, the maximum is external. Moreover, the data obtained for each land cover are much more variable in summer that in November, possibly due to the proportional increase in shadow areas. To check whether the information has any effect on multi-angle imaging classification of land cover and land use, a series of classifications have been produced changing the data used, from only multispectrally, to multi-angle and multispectral. The results show that while for the most generic classifications multi-angle information is the worst, as there are extended the number of classes to obtain such information it improves the results. On the other hand, an estimate was made of quantitative variables such as canopy cover and vegetation height using information provided by MISR at different resolutions. In the valley of Alcudia (Ciudad Real), we estimated the canopy cover of trees for a pixel of 275 m by using neural networks. The results showed that using multispectral and multiangle information can improve by almost 20% the estimates that only used multispectral data. Furthermore, the relationships obtained reached an R coefficient of 0.7 with errors below 10% in canopy cover, which is much better result than the one obtained using data from the Moderate Resolution Imaging Spectroradiometer (MODIS), also onboard Terra, for the same variable. Finally we estimated the canopy cover and the effective height of the vegetation for 700,000 hectares in the province of Murcia, with a spatial resolution of 1,100 m. The results show a relationship between the spectral and the multi-angle data, and provide estimates of the canopy cover with a Spearman’s coefficient of 0.8 in the case of the vegetation canopy cover, and 0.4 in the case of the effective height. The estimates of both variables using neural networks and various combinations of data, yield results with an R coefficient greater than 0.85 for the case of the canopy cover, and 0.6 for the effective height. Multi-angle parameters provided in the products made from MISR at 1,100 m pixel size, did not produce good results from themselves but improved the results when included to the spectral information. The mean square errors were less than 0.016 for the canopy cover, and 0.7 m for the effective height. Geographically weighted regressions also showed that locally we can have even better results, especially when there is high spatial variability of estimated variables. In summary, the use of the data provided by MISR offers a promising way of improving remote sensing performance in the low-medium spatial resolution, both for image classification and for the estimation of quantitative variables of the vegetation structure.
Resumo:
In this work, a new two-dimensional optics design method is proposed that enables the coupling of three ray sets with two lens surfaces. The method is especially important for optical systems designed for wide field of view and with clearly separated optical surfaces. Fermat’s principle is used to deduce a set of functional differential equations fully describing the entire optical system. The presented general analytic solution makes it possible to calculate the lens profiles. Ray tracing results for calculated 15th order Taylor polynomials describing the lens profiles demonstrate excellent imaging performance and the versatility of this new analytic design method.
Resumo:
The present research is focused on the application of hyperspectral images for the supervision of quality deterioration in ready to use leafy spinach during storage (Spinacia oleracea). Two sets of samples of packed leafy spinach were considered: (a) a first set of samples was stored at 20 °C (E-20) in order to accelerate the degradation process, and these samples were measured the day of reception in the laboratory and after 2 days of storage; (b) a second set of samples was kept at 10 °C (E-10), and the measurements were taken throughout storage, beginning the day of reception and repeating the acquisition of Images 3, 6 and 9 days later. Twenty leaves per test were analyzed. Hyperspectral images were acquired with a push-broom CCD camera equipped with a spectrograph VNIR (400–1000 nm). Calibration set of spectra was extracted from E-20 samples, containing three classes of degradation: class A (optimal quality), class B and class C (maximum deterioration). Reference average spectra were defined for each class. Three models, computed on the calibration set, with a decreasing degree of complexity were compared, according to their ability for segregating leaves at different quality stages (fresh, with incipient and non-visible symptoms of degradation, and degraded): spectral angle mapper distance (SAM), partial least squares discriminant analysis models (PLS-DA), and a non linear index (Leafy Vegetable Evolution, LEVE) combining five wavelengths were included among the previously selected by CovSel procedure. In sets E-10 and E-20, artificial images of the membership degree according to the distance of each pixel to the reference classes, were computed assigning each pixel to the closest reference class. The three methods were able to show the degradation of the leaves with storage time.
Resumo:
In this work, a new two-dimensional analytic optics design method is presented that enables the coupling of three ray sets with two lens profiles. This method is particularly promising for optical systems designed for wide field of view and with clearly separated optical surfaces. However, this coupling can only be achieved if different ray sets will use different portions of the second lens profile. Based on a very basic example of a single thick lens, the Simultaneous Multiple Surfaces design method in two dimensions (SMS2D) will help to provide a better understanding of the practical implications on the design process by an increased lens thickness and a wider field of view. Fermat?s principle is used to deduce a set of functional differential equations fully describing the entire optical system. The transformation of these functional differential equations into an algebraic linear system of equations allows the successive calculation of the Taylor series coefficients up to an arbitrary order. The evaluation of the solution space reveals the wide range of possible lens configurations covered by this analytic design method. Ray tracing analysis for calculated 20th order Taylor polynomials demonstrate excellent performance and the versatility of this new analytical optics design concept.
Resumo:
A new three-dimensional analytic optics design method is presented that enables the coupling of three ray sets with only two free-form lens surfaces. Closely related to the Simultaneous Multiple Surface method in three dimensions (SMS3D), it is derived directly from Fermat?s principle, leading to multiple sets of functional differential equations. The general solution of these equations makes it possible to calculate more than 80 coefficients for each implicit surface function. Ray tracing simulations of these free-form lenses demonstrate superior imaging performance for applications with high aspect ratio, compared to conventional rotational symmetric systems.
Resumo:
In this work, novel imaging designs with a single optical surface (either refractive or reflective) are presented. In some of these designs, both object and image shapes are given but mapping from object to image is obtained as a result of the design. In other designs, not only the mapping is obtained in the design process, but also the shape of the object is found. In the examples considered, the image is virtual and located at infinity and is seen from known pupil, which can emulate a human eye. In the first introductory part, 2D designs have been done using three different design methods: a SMS design, a compound Cartesian oval surface, and a differential equation method for the limit case of small pupil. At the point-size pupil limit, it is proven that these three methods coincide. In the second part, previous 2D designs are extended to 3D by rotation and the astigmatism of the image has been studied. As an advanced variation, the differential equation method is used to provide the freedom to control the tangential rays and sagittal rays simultaneously. As a result, designs without astigmatism (at the small pupil limit) on a curved object surface have been obtained. Finally, this anastigmatic differential equation method has been extended to 3D for the general case, in which freeform surfaces are designed.
Resumo:
In current industrial environments there is an increasing need for practical and inexpensive quality control systems to detect the foreign food materials in powder food processing lines. This demand is especially important for the detection of product adulteration with traces of highly allergenic products, such as peanuts and tree nuts. Manufacturing industries dealing with the processing of multiple powder food products present a substantial risk for the contamination of powder foods with traces of tree nuts and other adulterants, which might result in unintentional ingestion of nuts by the sensitised population. Hence, the need for an in-line system to detect nut traces at the early stages of food manufacturing is of crucial importance. In this present work, a feasibility study of a spectral index for revealing adulteration of tree nut and peanut traces in wheat flour samples with hyperspectral images is reported. The main nuts responsible for allergenic reactions considered in this work were peanut, hazelnut and walnut. Enhanced contrast between nuts and wheat flour was obtained after the application of the index. Furthermore, the segmentation of these images by selecting different thresholds for different nut and flour mixtures allowed the identification of nut traces in the samples. Pixels identified as nuts were counted and compared with the actual percentage of peanut adulteration. As a result, the multispectral system was able to detect and provide good visualisation of tree nut and peanut trace levels down to 0.01% by weight. In this context, multispectral imaging could operate in conjuction with chemical procedures, such as Real Time Polymerase Chain Reaction and Enzyme-Linked Immunosorbent Assay to save time, money and skilled labour on product quality control. This approach could enable not only a few selected samples to be assessed but also to extensively incorporate quality control surveyance on product processing lines.
Resumo:
In current industrial environments there is an increasing need for practical and inexpensive quality control systems to detect the foreign food materials in powder food processing lines. This demand is especially important for the detection of product adulteration with traces of highly allergenic products, such as peanuts and tree nuts. Manufacturing industries dealing with the processing of multiple powder food products present a substantial risk for the contamination of powder foods with traces of tree nuts and other adulterants, which might result in unintentional ingestion of nuts by the sensitised population. Hence, the need for an in-line system to detect nut traces at the early stages of food manufacturing is of crucial importance. In this present work, a feasibility study of a spectral index for revealing adulteration of tree nut and peanut traces in wheat flour samples with hyperspectral images is reported. The main nuts responsible for allergenic reactions considered in this work were peanut, hazelnut and walnut. Enhanced contrast between nuts and wheat flour was obtained after the application of the index. Furthermore, the segmentation of these images by selecting different thresholds for different nut and flour mixtures allowed the identification of nut traces in the samples. Pixels identified as nuts were counted and with the actual percentage of peanut adulteration. As a result, the multispectral system was able to detect and provide good visualisation of tree nut and peanut trace levels down to 0.01% by weight. In this context, multispectral imaging could operate in conjuction with chemical procedures, such as Real Time Polymerase Chain Reaction and Enzyme-Linked Immunosorbent Assay to save time, money and skilled labour on product quality control. This approach could enable not only a few selected samples to be assessed but also to extensively incorporate quality control surveyance on product processing lines.