2 resultados para Speaker identification

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durante el proceso de producción de voz, los factores anatómicos, fisiológicos o psicosociales del individuo modifican los órganos resonadores, imprimiendo en la voz características particulares. Los sistemas ASR tratan de encontrar los matices característicos de una voz y asociarlos a un individuo o grupo. La edad y sexo de un hablante son factores intrínsecos que están presentes en la voz. Este trabajo intenta diferenciar esas características, aislarlas y usarlas para detectar el género y la edad de un hablante. Para dicho fin, se ha realizado el estudio y análisis de las características basadas en el pulso glótico y el tracto vocal, evitando usar técnicas clásicas (como pitch y sus derivados) debido a las restricciones propias de dichas técnicas. Los resultados finales de nuestro estudio alcanzan casi un 100% en reconocimiento de género mientras en la tarea de reconocimiento de edad el reconocimiento se encuentra alrededor del 80%. Parece ser que la voz queda afectada por el género del hablante y las hormonas, aunque no se aprecie en la audición. ABSTRACT Particular elements of the voice are printed during the speech production process and are related to anatomical and physiological factors of the phonatory system or psychosocial factors acquired by the speaker. ASR systems attempt to find those peculiar nuances of a voice and associate them to an individual or a group. Age and gender are inherent factors to the speaker which may be represented in voice. This work attempts to differentiate those characteristics, isolate them and use them to detect speaker’s gender and age. Features based on glottal pulse and vocal tract are studied and analyzed in order to achieve good results in both tasks. Classical methodologies (such as pitch and derivates) are avoided since the requirements of those techniques may be too restrictive. The final scores achieve almost 100% in gender recognition whereas in age recognition those scores are around 80%. Factors related to the gender and hormones seem to affect the voice although they are not audible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the biggest challenges in speech synthesis is the production of contextually-appropriate naturally sounding synthetic voices. This means that a Text-To-Speech system must be able to analyze a text beyond the sentence limits in order to select, or even modulate, the speaking style according to a broader context. Our current architecture is based on a two-step approach: text genre identification and speaking style synthesis according to the detected discourse genre. For the final implementation, a set of four genres and their corresponding speaking styles were considered: broadcast news, live sport commentaries, interviews and political speeches. In the final TTS evaluation, the four speaking styles were transplanted to the neutral voices of other speakers not included in the training database. When the transplanted styles were compared to the neutral voices, transplantation was significantly preferred and the similarity to the target speaker was as high as 78%.