12 resultados para Spatio-temporal variability
em Universidad Politécnica de Madrid
Resumo:
Natural regeneration in stone pine (Pinus pinea L.) managed forests in the Spanish Northern Plateau is not achieved successfully under current silviculture practices, constituting a main concern for forest managers. We modelled spatio-temporal features of primary dispersal to test whether (a) present low stand densities constrain natural regeneration success and (b) seed release is a climate-controlled process. The present study is based on data collected from a 6 years seed trap experiment considering different regeneration felling intensities. From a spatial perspective, we attempted alternate established kernels under different data distribution assumptions to fit a spatial model able to predict P. pinea seed rain. Due to P. pinea umbrella-like crown, models were adapted to account for crown effect through correction of distances between potential seed arrival locations and seed sources. In addition, individual tree fecundity was assessed independently from existing models, improving parameter estimation stability. Seed rain simulation enabled to calculate seed dispersal indexes for diverse silvicultural regeneration treatments. The selected spatial model of best fit (Weibull, Poisson assumption) predicted a highly clumped dispersal pattern that resulted in a proportion of gaps where no seed arrival is expected (dispersal limitation) between 0.25 and 0.30 for intermediate intensity regeneration fellings and over 0.50 for intense fellings. To describe the temporal pattern, the proportion of seeds released during monthly intervals was modelled as a function of climate variables – rainfall events – through a linear model that considered temporal autocorrelation, whereas cone opening took place over a temperature threshold. Our findings suggest the application of less intensive regeneration fellings, to be carried out after years of successful seedling establishment and, seasonally, subsequent to the main rainfall period (late fall). This schedule would avoid dispersal limitation and would allow for a complete seed release. These modifications in present silviculture practices would produce a more efficient seed shadow in managed stands.
Resumo:
Relationships between agents in multitrophic systems are complex and very specific. Insect-transmitted plant viruses are completely dependent on the behaviour and distribution patterns of their vectors. The presence of natural enemies may directly affect aphid behaviour and spread of plant viruses, as the escape response of aphids might cause a potential risk for virus dispersal. The spatio-temporal dynamics of Cucumber mosaic virus (CMV) and Cucurbit aphid-borne yellows virus (CABYV), transmitted by Aphis gossypii in a non-persistent and persistent manner, respectively, were evaluated at short and long term in the presence and absence of the aphid parasitoid, Aphidius colemani. SADIE methodology was used to study the distribution patterns of both the virus and its vector, and their degree of association. Results suggested that parasitoids promoted aphid dispersion at short term, which enhanced CMV spread, though consequences of parasitism suggest potential benefits for disease control at long term. Furthermore, A. colemani significantly limited the spread and incidence of the persistent virus CABYV at long term. The impact of aphid parasitoids on the dispersal of plant viruses with different transmission modes is discussed.
Resumo:
Natural regeneration in Pinus pinea stands commonly fails throughout the Spanish Northern Plateau under current intensive regeneration treatments. As a result, extensive direct seeding is commonly conducted to guarantee regeneration occurrence. In a period of rationalization of the resources devoted to forest management, this kind of techniques may become unaffordable. Given that the climatic and stand factors driving germination remain unknown, tools are required to understand the process and temper the use of direct seeding. In this study, the spatio-temporal pattern of germination of P. pinea was modelled with those purposes. The resulting findings will allow us to (1) determine the main ecological variables involved in germination in the species and (2) infer adequate silvicultural alternatives. The modelling approach focuses on covariates which are readily available to forest managers. A two-step nonlinear mixed model was fitted to predict germination occurrence and abundance in P. pinea under varying climatic, environmental and stand conditions, based on a germination data set covering a 5-year period. The results obtained reveal that the process is primarily driven by climate variables. Favourable conditions for germination commonly occur in fall although the optimum window is often narrow and may not occur at all in some years. At spatial level, it would appear that germination is facilitated by high stand densities, suggesting that current felling intensity should be reduced. In accordance with other studies on P. pinea dispersal, it seems that denser stands during the regeneration period will reduce the present dependence on direct seeding.
Resumo:
The understanding of the embryogenesis in living systems requires reliable quantitative analysis of the cell migration throughout all the stages of development. This is a major challenge of the "in-toto" reconstruction based on different modalities of "in-vivo" imaging techniques -spatio-temporal resolution and image artifacts and noise. Several methods for cell tracking are available, but expensive manual interaction -time and human resources- is always required to enforce coherence. Because of this limitation it is necessary to restrict the experiments or assume an uncontrolled error rate. Is it possible to obtain automated reliable measurements of migration? can we provide a seed for biologists to complete cell lineages efficiently? We propose a filtering technique that considers trajectories as spatio-temporal connected structures that prunes out those that might introduce noise and false positives by using multi-dimensional morphological operators.
Resumo:
In this paper we present an adaptive spatio-temporal filter that aims to improve low-cost depth camera accuracy and stability over time. The proposed system is composed by three blocks that are used to build a reliable depth map of static scenes. An adaptive joint-bilateral filter is used to obtain consistent depth maps by jointly considering depth and video information and by adapting its parameters to different levels of estimated noise. Kalman filters are used to reduce the temporal random fluctuations of the measurements. Finally an interpolation algorithm is used to obtain consistent depth maps in the regions where the depth information is not available. Results show that this approach allows to considerably improve the depth maps quality by considering spatio-temporal information and by adapting its parameters to different levels of noise.
Resumo:
In this paper we present an efficient hole filling strategy that improves the quality of the depth maps obtained with the Microsoft Kinect device. The proposed approach is based on a joint-bilateral filtering framework that includes spatial and temporal information. The missing depth values are obtained applying iteratively a joint-bilateral filter to their neighbor pixels. The filter weights are selected considering three different factors: visual data, depth information and a temporal-consistency map. Video and depth data are combined to improve depth map quality in presence of edges and homogeneous regions. Finally, the temporal-consistency map is generated in order to track the reliability of the depth measurements near the hole regions. The obtained depth values are included iteratively in the filtering process of the successive frames and the accuracy of the hole regions depth values increases while new samples are acquired and filtered
Resumo:
Purpose The demand of rice by the increase in population in many countries has intensified the application of pesticides and the use of poor quality water to irrigate fields. The terrestrial environment is one compartment affected by these situations, where soil is working as a reservoir, retaining organic pollutants. Therefore, it is necessary to develop methods to determine insecticides in soil and monitor susceptible areas to be contaminated, applying adequate techniques to remediate them. Materials and methods This study investigates the occurrence of ten pyrethroid insecticides (PYs) and its spatio-temporal variance in soil at two different depths collected in two periods (before plow and during rice production), in a paddy field area located in the Mediterranean coast. Pyrethroids were quantified using gas chromatography?mass spectrometry (GC?MS) after ultrasound-assisted extraction with ethyl acetate. The results obtained were assessed statistically using non-parametric methods, and significant statistical differences (p < 0.05) in pyrethroids content with soil depth and proximity to wastewater treatment plants were evaluated. Moreover, a geographic information system (GIS) was used to monitor the occurrence of PYs in paddy fields and detect risk areas. Results and discussion Pyrethroids were detected at concentrations ?57.0 ng g?1 before plow and ?62.3 ng g?1 during rice production, being resmethrin and cyfluthrin the compounds found at higher concentrations in soil. Pyrethroids were detected mainly at the top soil, and a GIS program was used to depict the obtained results, showing that effluents from wastewater treatment plants (WWTPs) were the main sources of soil contamination. No toxic effects were expected to soil organisms, but it is of concern that PYs may affect aquatic organisms, which represents the worst case scenario. Conclusions A methodology to determine pyrethroids in soil was developed to monitor a paddy field area. The use of water fromWWTPs to irrigate rice fields is one of the main pollution sources of pyrethroids. It is a matter of concern that PYs may present toxic effects on aquatic organisms, as they can be desorbed from soil. Phytoremediation may play an important role in this area, reducing the possible risk associated to PYs levels in soil.
Resumo:
El impacto negativo que tienen los virus en las plantas hace que estos puedan ejercer un papel ecológico como moduladores de la dinámica espacio-temporal de las poblaciones de sus huéspedes. Entender cuáles son los mecanismos genéticos y los factores ambientales que determinan tanto la epidemiología como la estructura genética de las poblaciones de virus puede resultar de gran ayuda para la comprensión del papel ecológico de las infecciones virales. Sin embargo, existen pocos trabajos experimentales que hayan abordado esta cuestión. En esta tesis, se analiza el efecto de la heterogeneidad del paisaje sobre la incidencia de los virus y la estructura genética de sus poblaciones. Asimismo, se explora como dichos factores ambientales influyen en la importancia relativa que los principales mecanismos de generación de variabilidad genética (mutación, recombinación y migración) tienen en la evolución de los virus. Para ello se ha usado como sistema los begomovirus que infectan poblaciones de chiltepín (Capsicum annuum var. aviculare (Dierbach) D´Arcy & Eshbaugh) en México. Se analizó la incidencia de diferentes virus en poblaciones de chiltepín distribuidas a lo largo de seis provincias biogeográficas, representando el área de distribución de la especie en México, y localizadas en hábitats con diferente grado de intervención humana: poblaciones sin intervención humana (silvestres); poblaciones toleradas (lindes y pastizales), y poblaciones manejadas por el hombre (monocultivos y huertos familiares). Entre los virus analizados, los begomovirus mostraron la mayor incidencia, detectándose en todas las poblaciones y años de muestreo. Las únicas dos especies de begomovirus que se encontraron infectando al chiltepín fueron: el virus del mosaico dorado del chile (Pepper golden mosaic virus, PepGMV) y el virus huasteco del amarilleo de venas del chile (Pepper huasteco yellow vein virus, PHYVV). Por ello, todos los análisis realizados en esta tesis se centran en estas dos especies de virus. La incidencia de PepGMV y PHYVV, tanto en infecciones simples como mixtas, aumento cuanto mayor fue el nivel de intervención humana en las poblaciones de chiltepín, lo que a su vez se asoció con una menor biodiversidad y una mayor densidad de plantas. Además, la incidencia de infecciones mixtas, altamente relacionada con la presencia de síntomas, fue también mayor en las poblaciones cultivadas. La incidencia de estos dos virus también varió en función de la población de chiltepín y de la provincia biogeográfica. Por tanto, estos resultados apoyan una de las hipótesis XVI clásicas de la Patología Vegetal según la cual la simplificación de los ecosistemas naturales debida a la intervención humana conduce a un mayor riesgo de enfermedad de las plantas, e ilustran sobre la importancia de la heterogeneidad del paisaje a diferentes escalas en la determinación de patrones epidemiológicos. La heterogeneidad del paisaje no solo afectó a la epidemiología de PepGMV y PHYVV, sino también a la estructura genética de sus poblaciones. En ambos virus, el nivel de diferenciación genética mayor fue la población, probablemente asociado a la capacidad de migración de su vector Bemisia tabaci; y en segundo lugar la provincia biogeográfica, lo que podría estar relacionado con el papel del ser humano como agente dispersor de PepGMV y PHYVV. La estima de las tasas de sustitución nucleotídica de las poblaciones de PepGMV y PHYVV mostró una rápida dinámica evolutiva. Los árboles filogenéticos de ambos virus presentaron una topología en estrella, lo que sugiere una expansión reciente en las poblaciones de chiltepín. La reconstrucción de los patrones de migración de ambos virus indicó que ésta expansión parece haberse producido desde la zona central de México siguiendo un patrón radial, y en los últimos 30 años. Es importante tener en cuenta que el patrón espacial de la diversidad genética de las poblaciones de PepGMV y PHYVV es similar al descrito previamente para el chiltepín lo que podría dar lugar a la congruencia de las genealogías del huésped y la de los virus. Dicha congruencia se encontró cuando se tuvieron en cuenta únicamente las poblaciones de hábitats silvestres y tolerados, lo que probablemente se debe a una codivergencia en el espacio pero no en el tiempo, dado que la evolución de virus y huésped han ocurrido a escalas temporales muy diferentes. Finalmente, el análisis de la frecuencia de recombinación en PepGMV y PHYVV indicó que esta juega un papel importante en la evolución de ambos virus, dependiendo su importancia del nivel de intervención humana de la población de chiltepín. Este factor afectó también a la intensidad de la selección a la que se ven sometidos los genomas de PepGMV y PHYVV. Los resultados de esta tesis ponen de manifiesto la importancia que la reducción de la biodiversidad asociada al nivel de intervención humana de las poblaciones de plantas y la heterogeneidad del paisaje tiene en la emergencia de nuevas enfermedades virales. Por tanto, es necesario considerar estos factores ambientales a la hora de comprender la epidemiologia y la evolución de los virus de plantas.XVII SUMMARY Plant viruses play a key role as modulators of the spatio-temporal dynamics of their host populations, due to their negative impact in plant fitness. Knowledge on the genetic and environmental factors that determine the epidemiology and the genetic structure of virus populations may help to understand the ecological role of viral infections. However, few experimental works have addressed this issue. This thesis analyses the effect of landscape heterogeneity in the prevalence of viruses and the genetic structure of their populations. Also, how these environmental factors influence the relative importance of the main mechanisms for generating genetic variability (mutation, recombination and migration) during virus evolution is explored. To do so, the begomoviruses infecting chiltepin (Capsicum annuum var. aviculare (Dierbach) D'Arcy & Eshbaugh) populations in Mexico were used. Incidence of different viruses in chiltepin populations of six biogeographical provinces representing the species distribution in Mexico was determined. Populations belonged to different habitats according to the level of human management: populations with no human intervention (Wild); populations naturally dispersed and tolerated in managed habitats (let-standing), and human managed populations (cultivated). Among the analyzed viruses, the begomoviruses showed the highest prevalence, being detected in all populations and sampling years. Only two begomovirus species infected chiltepin: Pepper golden mosaic virus, PepGMV and Pepper huasteco yellow vein virus, PHYVV. Therefore, all the analyses presented in this thesis are focused in these two viruses. The prevalence of PepGMV and PHYVV, in single and mixed infections, increased with higher levels of human management of the host population, which was associated with decreased biodiversity and increased plant density. Furthermore, cultivated populations showed higher prevalence of mixed infections and symptomatic plants. The prevalence of the two viruses also varied depending on the chiltepin population and on the biogeographical province. Therefore, these results support a classical hypothesis of Plant Pathology stating that simplification of natural ecosystems due to human management leads to an increased disease risk, and illustrate on the importance of landscape heterogeneity in determining epidemiological patterns. Landscape heterogeneity not only affected the epidemiology of PepGMV and PHYVV, but also the genetic structure of their populations. Both viruses had the highest level of genetic differentiation at the population scale, probably associated with the XVIII migration patterns of its vector Bemisia tabaci, and a second level at the biogeographical province scale, which could be related to the role of humans as dispersal agents of PepGMV and PHYVV. The estimates of nucleotide substitution rates of the virus populations indicated rapid evolutionary dynamics. Accordingly, phylogenetic trees of both viruses showed a star topology, suggesting a recent diversification in the chiltepin populations. Reconstruction of PepGMV and PHYVV migration patterns indicated that they expanded from central Mexico following a radial pattern during the last 30 years. Importantly, the spatial genetic structures of the virus populations were similar to that described previously for the chiltepin, which may result in the congruence of the host and virus genealogies. Such congruence was found only in wild and let-standing populations. This is probably due to a co-divergence in space but not in time, given the different evolutionary time scales of the host and virus populations. Finally, the frequency of recombination detected in the PepGMV and PHYVV populations indicated that this mechanism plays an important role in the evolution of both viruses at the intra-specific scale. The level of human management had a minor effect on the frequency of recombination, but influenced the strength of negative selective pressures in the viral genomes. The results of this thesis highlight the importance of decreased biodiversity in plant populations associated with the level of human management and of landscape heterogeneity on the emergence of new viral diseases. Therefore it is necessary to consider these environmental factors in order to fully understand the epidemiology and evolution of plant viruses.
Resumo:
The overall objective of this research project is to enrich geographic data with temporal and semantic components in order to significantly improve spatio-temporal analysis of geographic phenomena. To achieve this goal, we intend to establish and incorporate three new layers (structures) into the core of the Geographic Information by using mark-up languages as well as defining a set of methods and tools for enriching the system to make it able to retrieve and exploit such layers (semantic-temporal, geosemantic, and incremental spatio-temporal). Besides these layers, we also propose a set of models (temporal and spatial) and two semantic engines that make the most of the enriched geographic data. The roots of the project and its definition have been previously presented in Siabato & Manso-Callejo 2011. In this new position paper, we extend such work by delineating clearly the methodology and the foundations on which we will base to define the main components of this research: the spatial model, the temporal model, the semantic layers, and the semantic engines. By putting together the former paper and this new work we try to present a comprehensive description of the whole process, from pinpointing the basic problem to describing and assessing the solution. In this new article we just mention the methods and the background to describe how we intend to define the components and integrate them into the GI.
Resumo:
The Caribbean and Central America are among the regions with highest HIV-1B prevalence worldwide. Despite of this high virus burden, little is known about the timing and the migration patterns of HIV-1B in these regions. Migration is one of the major processes shaping the genetic structure of virus populations. Thus, reconstruction of epidemiological network may contribute to understand HIV-1B evolution and reduce virus prevalence. We have investigated the spatio-temporal dynamics of the HIV-1B epidemic in The Caribbean and Central America using 1,610 HIV-1B partial pol sequences from 13 Caribbean and 5 Central American countries. Timing of HIV-1B introduction and virus evolutionary rates, as well as the spatial genetic structure of the HIV-1B populations and the virus migration patterns were inferred. Results revealed that in The Caribbean and Central America most of the HIV-1B variability was generated since the 80 s. At odds with previous data suggesting that Haiti was the origin of the epidemic in The Caribbean, our reconstruction indicated that the virus could have been disseminated from Puerto Rico and Antigua. These two countries connected two distinguishable migration areas corresponding to the (mainly Spanish-colonized) Easter and (mainly British-colonized) Western islands, which indicates that virus migration patterns are determined by geographical barriers and by the movement of human populations among culturally related countries. Similar factors shaped the migration of HIV-1B in Central America. The HIV-1B population was significantly structured according to the country of origin, and the genetic diversity in each country was associated with the virus prevalence in both regions, which suggests that virus populations evolve mainly through genetic drift. Thus, our work contributes to the understanding of HIV-1B evolution and dispersion pattern in the Americas, and its relationship with the geography of the area and the movements of human populations.
Resumo:
El enriquecimiento del conocimiento sobre la Irradiancia Solar (IS) a nivel de superficie terrestre, así como su predicción, cobran gran interés para las Energías Renovables (ER) - Energía Solar (ES)-, y para distintas aplicaciones industriales o ecológicas. En el ámbito de las ER, el uso óptimo de la ES implica contar con datos de la IS en superficie que ayuden tanto, en la selección de emplazamientos para instalaciones de ES, como en su etapa de diseño (dimensionar la producción) y, finalmente, en su explotación. En este último caso, la observación y la predicción es útil para el mercado energético, la planificación y gestión de la energía (generadoras y operadoras del sistema eléctrico), especialmente en los nuevos contextos de las redes inteligentes de transporte. A pesar de la importancia estratégica de contar con datos de la IS, especialmente los observados por sensores de IS en superficie (los que mejor captan esta variable), estos no siempre están disponibles para los lugares de interés ni con la resolución espacial y temporal deseada. Esta limitación se une a la necesidad de disponer de predicciones a corto plazo de la IS que ayuden a la planificación y gestión de la energía. Se ha indagado y caracterizado las Redes de Estaciones Meteorológicas (REM) existentes en España que publican en internet sus observaciones, focalizando en la IS. Se han identificado 24 REM (16 gubernamentales y 8 redes voluntarios) que aglutinan 3492 estaciones, convirtiéndose éstas en las fuentes de datos meteorológicos utilizados en la tesis. Se han investigado cinco técnicas de estimación espacial de la IS en intervalos de 15 minutos para el territorio peninsular (3 técnicas geoestadísticas, una determinística y el método HelioSat2 basado en imágenes satelitales) con distintas configuraciones espaciales. Cuando el área de estudio tiene una adecuada densidad de observaciones, el mejor método identificado para estimar la IS es el Kriging con Regresión usando variables auxiliares -una de ellas la IS estimada a partir de imágenes satelitales-. De este modo es posible estimar espacialmente la IS más allá de los 25 km identificados en la bibliografía. En caso contrario, se corrobora la idoneidad de utilizar estimaciones a partir de sensores remotos cuando la densidad de observaciones no es adecuada. Se ha experimentado con el modelado de Redes Neuronales Artificiales (RNA) para la predicción a corto plazo de la IS utilizando observaciones próximas (componentes espaciales) en sus entradas y, los resultados son prometedores. Así los niveles de errores disminuyen bajo las siguientes condiciones: (1) cuando el horizonte temporal de predicción es inferior o igual a 3 horas, las estaciones vecinas que se incluyen en el modelo deben encentrarse a una distancia máxima aproximada de 55 km. Esto permite concluir que las RNA son capaces de aprender cómo afectan las condiciones meteorológicas vecinas a la predicción de la IS. ABSTRACT ABSTRACT The enrichment of knowledge about the Solar Irradiance (SI) at Earth's surface and its prediction, have a high interest for Renewable Energy (RE) - Solar Energy (SE) - and for various industrial and environmental applications. In the field of the RE, the optimal use of the SE involves having SI surface to help in the selection of sites for facilities ES, in the design stage (sizing energy production), and finally on their production. In the latter case, the observation and prediction is useful for the market, planning and management of the energy (generators and electrical system operators), especially in new contexts of smart transport networks (smartgrid). Despite the strategic importance of SI data, especially those observed by sensors of SI at surface (the ones that best measure this environmental variable), these are not always available to the sights and the spatial and temporal resolution desired. This limitation is bound to the need for short-term predictions of the SI to help planning and energy management. It has been investigated and characterized existing Networks of Weather Stations (NWS) in Spain that share its observations online, focusing on SI. 24 NWS have been identified (16 government and 8 volunteer networks) that implies 3492 stations, turning it into the sources of meteorological data used in the thesis. We have investigated five technical of spatial estimation of SI in 15 minutes to the mainland (3 geostatistical techniques and HelioSat2 a deterministic method based on satellite images) with different spatial configurations. When the study area has an adequate density of observations we identified the best method to estimate the SI is the regression kriging with auxiliary variables (one of them is the SI estimated from satellite images. Thus it is possible to spatially estimate the SI beyond the 25 km identified in the literature. Otherwise, when the density of observations is inadequate the appropriateness is using the estimates values from remote sensing. It has been experimented with Artificial Neural Networks (ANN) modeling for predicting the short-term future of the SI using observations from neighbor’s weather stations (spatial components) in their inputs, and the results are promising. The error levels decrease under the following conditions: (1) when the prediction horizon is less or equal than 3 hours the best models are the ones that include data from the neighboring stations (at a maximum distance of 55 km). It is concluded that the ANN is able to learn how weather conditions affect neighboring prediction of IS at such Spatio-temporal horizons.
Resumo:
La embriogénesis es el proceso mediante el cual una célula se convierte en un ser un vivo. A lo largo de diferentes etapas de desarrollo, la población de células va proliferando a la vez que el embrión va tomando forma y se configura. Esto es posible gracias a la acción de varios procesos genéticos, bioquímicos y mecánicos que interaccionan y se regulan entre ellos formando un sistema complejo que se organiza a diferentes escalas espaciales y temporales. Este proceso ocurre de manera robusta y reproducible, pero también con cierta variabilidad que permite la diversidad de individuos de una misma especie. La aparición de la microscopía de fluorescencia, posible gracias a proteínas fluorescentes que pueden ser adheridas a las cadenas de expresión de las células, y los avances en la física óptica de los microscopios han permitido observar este proceso de embriogénesis in-vivo y generar secuencias de imágenes tridimensionales de alta resolución espacio-temporal. Estas imágenes permiten el estudio de los procesos de desarrollo embrionario con técnicas de análisis de imagen y de datos, reconstruyendo dichos procesos para crear la representación de un embrión digital. Una de las más actuales problemáticas en este campo es entender los procesos mecánicos, de manera aislada y en interacción con otros factores como la expresión genética, para que el embrión se desarrolle. Debido a la complejidad de estos procesos, estos problemas se afrontan mediante diferentes técnicas y escalas específicas donde, a través de experimentos, pueden hacerse y confrontarse hipótesis, obteniendo conclusiones sobre el funcionamiento de los mecanismos estudiados. Esta tesis doctoral se ha enfocado sobre esta problemática intentando mejorar las metodologías del estado del arte y con un objetivo específico: estudiar patrones de deformación que emergen del movimiento organizado de las células durante diferentes estados del desarrollo del embrión, de manera global o en tejidos concretos. Estudios se han centrado en la mecánica en relación con procesos de señalización o interacciones a nivel celular o de tejido. En este trabajo, se propone un esquema para generalizar el estudio del movimiento y las interacciones mecánicas que se desprenden del mismo a diferentes escalas espaciales y temporales. Esto permitiría no sólo estudios locales, si no estudios sistemáticos de las escalas de interacción mecánica dentro de un embrión. Por tanto, el esquema propuesto obvia las causas de generación de movimiento (fuerzas) y se centra en la cuantificación de la cinemática (deformación y esfuerzos) a partir de imágenes de forma no invasiva. Hoy en día las dificultades experimentales y metodológicas y la complejidad de los sistemas biológicos impiden una descripción mecánica completa de manera sistemática. Sin embargo, patrones de deformación muestran el resultado de diferentes factores mecánicos en interacción con otros elementos dando lugar a una organización mecánica, necesaria para el desarrollo, que puede ser cuantificado a partir de la metodología propuesta en esta tesis. La metodología asume un medio continuo descrito de forma Lagrangiana (en función de las trayectorias de puntos materiales que se mueven en el sistema en lugar de puntos espaciales) de la dinámica del movimiento, estimado a partir de las imágenes mediante métodos de seguimiento de células o de técnicas de registro de imagen. Gracias a este esquema es posible describir la deformación instantánea y acumulada respecto a un estado inicial para cualquier dominio del embrión. La aplicación de esta metodología a imágenes 3D + t del pez zebra sirvió para desvelar estructuras mecánicas que tienden a estabilizarse a lo largo del tiempo en dicho embrión, y que se organizan a una escala semejante al del mapa de diferenciación celular y con indicios de correlación con patrones de expresión genética. También se aplicó la metodología al estudio del tejido amnioserosa de la Drosophila (mosca de la fruta) durante el cierre dorsal, obteniendo indicios de un acoplamiento entre escalas subcelulares, celulares y supracelulares, que genera patrones complejos en respuesta a la fuerza generada por los esqueletos de acto-myosina. En definitiva, esta tesis doctoral propone una estrategia novedosa de análisis de la dinámica celular multi-escala que permite cuantificar patrones de manera inmediata y que además ofrece una representación que reconstruye la evolución de los procesos como los ven las células, en lugar de como son observados desde el microscopio. Esta metodología por tanto permite nuevas formas de análisis y comparación de embriones y tejidos durante la embriogénesis a partir de imágenes in-vivo. ABSTRACT The embryogenesis is the process from which a single cell turns into a living organism. Through several stages of development, the cell population proliferates at the same time the embryo shapes and the organs develop gaining their functionality. This is possible through genetic, biochemical and mechanical factors that are involved in a complex interaction of processes organized in different levels and in different spatio-temporal scales. The embryogenesis, through this complexity, develops in a robust and reproducible way, but allowing variability that makes possible the diversity of living specimens. The advances in physics of microscopes and the appearance of fluorescent proteins that can be attached to expression chains, reporting about structural and functional elements of the cell, have enabled for the in-vivo observation of embryogenesis. The imaging process results in sequences of high spatio-temporal resolution 3D+time data of the embryogenesis as a digital representation of the embryos that can be further analyzed, provided new image processing and data analysis techniques are developed. One of the most relevant and challenging lines of research in the field is the quantification of the mechanical factors and processes involved in the shaping process of the embryo and their interactions with other embryogenesis factors such as genetics. Due to the complexity of the processes, studies have focused on specific problems and scales controlled in the experiments, posing and testing hypothesis to gain new biological insight. However, methodologies are often difficult to be exported to study other biological phenomena or specimens. This PhD Thesis is framed within this paradigm of research and tries to propose a systematic methodology to quantify the emergent deformation patterns from the motion estimated in in-vivo images of embryogenesis. Thanks to this strategy it would be possible to quantify not only local mechanisms, but to discover and characterize the scales of mechanical organization within the embryo. The framework focuses on the quantification of the motion kinematics (deformation and strains), neglecting the causes of the motion (forces), from images in a non-invasive way. Experimental and methodological challenges hamper the quantification of exerted forces and the mechanical properties of tissues. However, a descriptive framework of deformation patterns provides valuable insight about the organization and scales of the mechanical interactions, along the embryo development. Such a characterization would help to improve mechanical models and progressively understand the complexity of embryogenesis. This framework relies on a Lagrangian representation of the cell dynamics system based on the trajectories of points moving along the deformation. This approach of analysis enables the reconstruction of the mechanical patterning as experienced by the cells and tissues. Thus, we can build temporal profiles of deformation along stages of development, comprising both the instantaneous events and the cumulative deformation history. The application of this framework to 3D + time data of zebrafish embryogenesis allowed us to discover mechanical profiles that stabilized through time forming structures that organize in a scale comparable to the map of cell differentiation (fate map), and also suggesting correlation with genetic patterns. The framework was also applied to the analysis of the amnioserosa tissue in the drosophila’s dorsal closure, revealing that the oscillatory contraction triggered by the acto-myosin network organized complexly coupling different scales: local force generation foci, cellular morphology control mechanisms and tissue geometrical constraints. In summary, this PhD Thesis proposes a theoretical framework for the analysis of multi-scale cell dynamics that enables to quantify automatically mechanical patterns and also offers a new representation of the embryo dynamics as experienced by cells instead of how the microscope captures instantaneously the processes. Therefore, this framework enables for new strategies of quantitative analysis and comparison between embryos and tissues during embryogenesis from in-vivo images.