9 resultados para South Carolina Bureau of Air Quality--Periodicals
em Universidad Politécnica de Madrid
Resumo:
1. Introduction 2. Air Quality Modeling system 3. Emission Inventories 4. Applications and Results 5. Conclusions
Resumo:
Modeling is an essential tool for the development of atmospheric emission abatement measures and air quality plans. Most often these plans are related to urban environments with high emission density and population exposure. However, air quality modeling in urban areas is a rather challenging task. As environmental standards become more stringent (e.g. European Directive 2008/50/EC), more reliable and sophisticated modeling tools are needed to simulate measures and plans that may effectively tackle air quality exceedances, common in large urban areas across Europe, particularly for NO2. This also implies that emission inventories must satisfy a number of conditions such as consistency across the spatial scales involved in the analysis, consistency with the emission inventories used for regulatory purposes and versatility to match the requirements of different air quality and emission projection models. This study reports the modeling activities carried out in Madrid (Spain) highlighting the atmospheric emission inventory development and preparation as an illustrative example of the combination of models and data needed to develop a consistent air quality plan at urban level. These included a series of source apportionment studies to define contributions from the international, national, regional and local sources in order to understand to what extent local authorities can enforce meaningful abatement measures. Moreover, source apportionment studies were conducted in order to define contributions from different sectors and to understand the maximum feasible air quality improvement that can be achieved by reducing emissions from those sectors, thus targeting emission reduction policies to the most relevant activities. Finally, an emission scenario reflecting the effect of such policies was developed and the associated air quality was modeled.
Resumo:
The present paper describes the advancement and evaluation of air quality-related impacts with the Atmospheric Evaluation and Research Integrated system for Spain (AERIS). In its current version, AERIS is able to provide estimates on the impacts of air quality over human health (PM2.5 and O3), crops and vegetation (O3). The modules that allow quantifying the before mentioned impacts were modeled by applying different approaches (mostly for the European context) present in scientific literature to the conditions of the Iberian Peninsula. This application was supported by reliable data sources, as well as by the good predictive capacity of AERIS for ambient concentrations. For validation purposes, the estimates of AERIS for impacts on human health (change in the statistical life expectancy-PM2.5) and vegetation (loss of wheat crops-O3) were compared against results from the SERCA project and GAINS estimates for two emission scenarios. In general, good results evidenced by reasonable correlation coefficients were obtained, therefore confirming the adequateness of the followed modeling approaches and the quality of AERIS predictions.
Resumo:
Background: In recent years, Spain has implemented a number of air quality control measures that are expected to lead to a future reduction in fine particle concentrations and an ensuing positive impact on public health. Objectives: We aimed to assess the impact on mortality attributable to a reduction in fine particle levels in Spain in 2014 in relation to the estimated level for 2007. Methods: To estimate exposure, we constructed fine particle distribution models for Spain for 2007 (reference scenario) and 2014 (projected scenario) with a spatial resolution of 16x16 km2. In a second step, we used the concentration-response functions proposed by cohort studies carried out in Europe (European Study of Cohorts for Air Pollution Effects and Rome longitudinal cohort) and North America (American Cancer Society cohort, Harvard Six Cities study and Canadian national cohort) to calculate the number of attributable annual deaths corresponding to all causes, all non-accidental causes, ischemic heart disease and lung cancer among persons aged over 25 years (2005-2007 mortality rate data). We examined the effect of the Spanish demographic shift in our analysis using 2007 and 2012 population figures. Results: Our model suggested that there would be a mean overall reduction in fine particle levels of 1mg/m3 by 2014. Taking into account 2007 population data, between 8 and 15 all-cause deaths per 100,000 population could be postponed annually by the expected reduction in fine particle levels. For specific subgroups, estimates varied from 10 to 30 deaths for all non-accidental causes, from 1 to 5 for lung cancer, and from 2 to 6 for ischemic heart disease. The expected burden of preventable mortality would be even higher in the future due to the Spanish population growth. Taking into account the population older than 30 years in 2012, the absolute mortality impact estimate would increase approximately by 18%. Conclusions: Effective implementation of air quality measures in Spain, in a scenario with a short-term projection, would amount to an appreciable decline infine particle concentrations, and this, in turn, would lead to notable health-related benefits. Recent European cohort studies strengthen the evidence of an association between long-term exposure to fine particles and health effects, and could enhance the health impact quantification in Europe. Air quality models can contribute to improved assessment of air pollution health impact estimates, particularly in study areas without air pollution monitoring data.
Resumo:
Este trabajo presenta un análisis y una metodología para la armonización de inventarios de emisiones utilizados en modelos de calidad del aire.
Resumo:
This study aims to assess the performance or multi-layer canopy parameterizations implemented in the mesoscale WRF model in order to understand their potential contribution to improve the description of energy fluxes and wind fields in the Madrid city. It was found that the Building Energy Model (BEP+BEM) parameterization yielded better results than the bulk standard scheme implemented in the Noah LSM, but very close to those of the Building Energy Parameterization (BEP). The later was deemed as the best option since data requirements and CPU time were smaller. Two annual runs were made to feed the CMAQ chemical-transport model to assess the impact of this feature in routinely air quality modelling activities.
Resumo:
As environmental standards become more stringent (e.g. European Directive 2008/50/EC), more reliable and sophisticated modeling tools are needed to simulate measures and plans that may effectively tackle air quality exceedances, common in large cities across Europe, particularly for NO2. Modeling air quality in urban areas is rather complex since observed concentration values are a consequence of the interaction of multiple sources and processes that involve a wide range of spatial and temporal scales. Besides a consistent and robust multi-scale modeling system, comprehensive and flexible emission inventories are needed. This paper discusses the application of the WRF-SMOKE-CMAQ system to the Madrid city (Spain) to assess the contribution of the main emitting sectors in the region. A detailed emission inventory was compiled for this purpose. This inventory relies on bottom-up methods for the most important sources. It is coupled with the regional traffic model and it makes use of an extensive database of industrial, commercial and residential combustion plants. Less relevant sources are downscaled from national or regional inventories. This paper reports the methodology and main results of the source apportionment study performed to understand the origin of pollution (main sectors and geographical areas) and define clear targets for the abatement strategy. Finally the structure of the air quality monitoring is analyzed and discussed to identify options to improve the monitoring strategy not only in the Madrid city but the whole metropolitan area.
Resumo:
La mejora de la calidad del aire es una tarea eminentemente interdisciplinaria. Dada la gran variedad de ciencias y partes involucradas, dicha mejora requiere de herramientas de evaluación simples y completamente integradas. La modelización para la evaluación integrada (integrated assessment modeling) ha demostrado ser una solución adecuada para la descripción de los sistemas de contaminación atmosférica puesto que considera cada una de las etapas involucradas: emisiones, química y dispersión atmosférica, impactos ambientales asociados y potencial de disminución. Varios modelos de evaluación integrada ya están disponibles a escala continental, cubriendo cada una de las etapas antesmencionadas, siendo el modelo GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) el más reconocido y usado en el contexto europeo de toma de decisiones medioambientales. Sin embargo, el manejo de la calidad del aire a escala nacional/regional dentro del marco de la evaluación integrada es deseable. Esto sin embargo, no se lleva a cabo de manera satisfactoria con modelos a escala europea debido a la falta de resolución espacial o de detalle en los datos auxiliares, principalmente los inventarios de emisión y los patrones meteorológicos, entre otros. El objetivo de esta tesis es presentar los desarrollos en el diseño y aplicación de un modelo de evaluación integrada especialmente concebido para España y Portugal. El modelo AERIS (Atmospheric Evaluation and Research Integrated system for Spain) es capaz de cuantificar perfiles de concentración para varios contaminantes (NO2, SO2, PM10, PM2,5, NH3 y O3), el depósito atmosférico de especies de azufre y nitrógeno así como sus impactos en cultivos, vegetación, ecosistemas y salud como respuesta a cambios porcentuales en las emisiones de sectores relevantes. La versión actual de AERIS considera 20 sectores de emisión, ya sea equivalentes a sectores individuales SNAP o macrosectores, cuya contribución a los niveles de calidad del aire, depósito e impactos han sido modelados a través de matrices fuentereceptor (SRMs). Estas matrices son constantes de proporcionalidad que relacionan cambios en emisiones con diferentes indicadores de calidad del aire y han sido obtenidas a través de parametrizaciones estadísticas de un modelo de calidad del aire (AQM). Para el caso concreto de AERIS, su modelo de calidad del aire “de origen” consistió en el modelo WRF para la meteorología y en el modelo CMAQ para los procesos químico-atmosféricos. La cuantificación del depósito atmosférico, de los impactos en ecosistemas, cultivos, vegetación y salud humana se ha realizado siguiendo las metodologías estándar establecidas bajo los marcos internacionales de negociación, tales como CLRTAP. La estructura de programación está basada en MATLAB®, permitiendo gran compatibilidad con software típico de escritorio comoMicrosoft Excel® o ArcGIS®. En relación con los niveles de calidad del aire, AERIS es capaz de proveer datos de media anual y media mensual, así como el 19o valor horario más alto paraNO2, el 25o valor horario y el 4o valor diario más altos para SO2, el 36o valor diario más alto para PM10, el 26o valor octohorario más alto, SOMO35 y AOT40 para O3. En relación al depósito atmosférico, el depósito acumulado anual por unidad de area de especies de nitrógeno oxidado y reducido al igual que de azufre pueden ser determinados. Cuando los valores anteriormente mencionados se relacionan con características del dominio modelado tales como uso de suelo, cubiertas vegetales y forestales, censos poblacionales o estudios epidemiológicos, un gran número de impactos puede ser calculado. Centrándose en los impactos a ecosistemas y suelos, AERIS es capaz de estimar las superaciones de cargas críticas y las superaciones medias acumuladas para especies de nitrógeno y azufre. Los daños a bosques se calculan como una superación de los niveles críticos de NO2 y SO2 establecidos. Además, AERIS es capaz de cuantificar daños causados por O3 y SO2 en vid, maíz, patata, arroz, girasol, tabaco, tomate, sandía y trigo. Los impactos en salud humana han sido modelados como consecuencia de la exposición a PM2,5 y O3 y cuantificados como pérdidas en la esperanza de vida estadística e indicadores de mortalidad prematura. La exactitud del modelo de evaluación integrada ha sido contrastada estadísticamente con los resultados obtenidos por el modelo de calidad del aire convencional, exhibiendo en la mayoría de los casos un buen nivel de correspondencia. Debido a que la cuantificación de los impactos no es llevada a cabo directamente por el modelo de calidad del aire, un análisis de credibilidad ha sido realizado mediante la comparación de los resultados de AERIS con los de GAINS para un escenario de emisiones determinado. El análisis reveló un buen nivel de correspondencia en las medias y en las distribuciones probabilísticas de los conjuntos de datos. Las pruebas de verificación que fueron aplicadas a AERIS sugieren que los resultados son suficientemente consistentes para ser considerados como razonables y realistas. En conclusión, la principal motivación para la creación del modelo fue el producir una herramienta confiable y a la vez simple para el soporte de las partes involucradas en la toma de decisiones, de cara a analizar diferentes escenarios “y si” con un bajo coste computacional. La interacción con políticos y otros actores dictó encontrar un compromiso entre la complejidad del modeladomedioambiental con el carácter conciso de las políticas, siendo esto algo que AERIS refleja en sus estructuras conceptual y computacional. Finalmente, cabe decir que AERIS ha sido creado para su uso exclusivo dentro de un marco de evaluación y de ninguna manera debe ser considerado como un sustituto de los modelos de calidad del aire ordinarios. ABSTRACT Improving air quality is an eminently inter-disciplinary task. The wide variety of sciences and stakeholders that are involved call for having simple yet fully-integrated and reliable evaluation tools available. Integrated AssessmentModeling has proved to be a suitable solution for the description of air pollution systems due to the fact that it considers each of the involved stages: emissions, atmospheric chemistry, dispersion, environmental impacts and abatement potentials. Some integrated assessment models are available at European scale that cover each of the before mentioned stages, being the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model the most recognized and widely-used within a European policy-making context. However, addressing air quality at the national/regional scale under an integrated assessment framework is desirable. To do so, European-scale models do not provide enough spatial resolution or detail in their ancillary data sources, mainly emission inventories and local meteorology patterns as well as associated results. The objective of this dissertation is to present the developments in the design and application of an Integrated Assessment Model especially conceived for Spain and Portugal. The Atmospheric Evaluation and Research Integrated system for Spain (AERIS) is able to quantify concentration profiles for several pollutants (NO2, SO2, PM10, PM2.5, NH3 and O3), the atmospheric deposition of sulfur and nitrogen species and their related impacts on crops, vegetation, ecosystems and health as a response to percentual changes in the emissions of relevant sectors. The current version of AERIS considers 20 emission sectors, either corresponding to individual SNAP sectors or macrosectors, whose contribution to air quality levels, deposition and impacts have been modeled through the use of source-receptor matrices (SRMs). Thesematrices are proportionality constants that relate emission changes with different air quality indicators and have been derived through statistical parameterizations of an air qualitymodeling system (AQM). For the concrete case of AERIS, its parent AQM relied on the WRF model for meteorology and on the CMAQ model for atmospheric chemical processes. The quantification of atmospheric deposition, impacts on ecosystems, crops, vegetation and human health has been carried out following the standard methodologies established under international negotiation frameworks such as CLRTAP. The programming structure isMATLAB ® -based, allowing great compatibility with typical software such as Microsoft Excel ® or ArcGIS ® Regarding air quality levels, AERIS is able to provide mean annual andmean monthly concentration values, as well as the indicators established in Directive 2008/50/EC, namely the 19th highest hourly value for NO2, the 25th highest daily value and the 4th highest hourly value for SO2, the 36th highest daily value of PM10, the 26th highest maximum 8-hour daily value, SOMO35 and AOT40 for O3. Regarding atmospheric deposition, the annual accumulated deposition per unit of area of species of oxidized and reduced nitrogen as well as sulfur can be estimated. When relating the before mentioned values with specific characteristics of the modeling domain such as land use, forest and crops covers, population counts and epidemiological studies, a wide array of impacts can be calculated. When focusing on impacts on ecosystems and soils, AERIS is able to estimate critical load exceedances and accumulated average exceedances for nitrogen and sulfur species. Damage on forests is estimated as an exceedance of established critical levels of NO2 and SO2. Additionally, AERIS is able to quantify damage caused by O3 and SO2 on grapes, maize, potato, rice, sunflower, tobacco, tomato, watermelon and wheat. Impacts on human health aremodeled as a consequence of exposure to PM2.5 and O3 and quantified as losses in statistical life expectancy and premature mortality indicators. The accuracy of the IAM has been tested by statistically contrasting the obtained results with those yielded by the conventional AQM, exhibiting in most cases a good agreement level. Due to the fact that impacts cannot be directly produced by the AQM, a credibility analysis was carried out for the outputs of AERIS for a given emission scenario by comparing them through probability tests against the performance of GAINS for the same scenario. This analysis revealed a good correspondence in the mean behavior and the probabilistic distributions of the datasets. The verification tests that were applied to AERIS suggest that results are consistent enough to be credited as reasonable and realistic. In conclusion, the main reason thatmotivated the creation of this model was to produce a reliable yet simple screening tool that would provide decision and policy making support for different “what-if” scenarios at a low computing cost. The interaction with politicians and other stakeholders dictated that reconciling the complexity of modeling with the conciseness of policies should be reflected by AERIS in both, its conceptual and computational structures. It should be noted however, that AERIS has been created under a policy-driven framework and by no means should be considered as a substitute of the ordinary AQM.
Resumo:
An evaluation of the concentration levels of Particulate Matter (PM) was carried out in Madrid (Spain) by introducing the emissions from road dust resuspension. Road dust resuspension emission factors (EF) for different types of vehicles were calculated from EPA-AP42, a global resuspension factor of 0.097 g veh−1km−1 as described in Amato et al. (2010) and a rain-dependent correction factor. With these resuspension EFs, a simulation at street canyon level was performed with the OSPM model without rainfall. Subsequently, a simulation using the CMAQ model was implemented adding resuspension emissions affected by the rain. These data were compared with monitored data obtained from air quality stations. OSPM model simulations with resuspension EFs but without the effect of rainfall improve the PM estimates in about 20gm−3μ compared to the simulation with default EFs. Total emissions were calculated by adding the emissions estimated with resuspension EFs to the default PM emissions to be used by CMAQ. For the study in the Madrid Area, resuspension emissions are approximately of the same order of magnitude as inventoried emissions. On a monthly scale, rain effects are negligible for resuspension emissions due to the dry weather conditions of Spain. With the exception of April and May, the decrease in resuspension emissions is not >3%. The predicted PM10 concentration increases up to 9μ gm−3 on annual average for each station compared to the same scenario without resuspension. However, in both cases, PM 10 estimates with resuspension are still underestimating observations. It should be noted that although that accounting for resuspension improves the quality of model predictions, other PM sources (e.g., Saharan dust) were not considered in this study.