27 resultados para Solving Rule
em Universidad Politécnica de Madrid
Resumo:
Some requirements for engineering programmes, such as an ability to use the techniques, skills and modern engineering tools necessary for engineering practice, as well as an understanding of professional and ethical responsibility or an ability to communicate effectively, need new activities designed for measuring students’ progress. Negotiations take place continuously at any stage of a project and, so, the ability of engineers and managers to effectively carry out a negotiation is crucial for the success or failure of projects and businesses. Since it involves communication between individuals motivated to come together in an agreement for mutual benefit, it can be used to enhance these personal abilities. The main objective of this study was to evaluate the adequacy of mixing playing sessions and theory to maximise the students’ strategic vision in combination with negotiating skills. Results show that the combination of playing with theoretical training teaches students to strategise through analysis and discussion of alternatives. The outcome is then more optimised.
Resumo:
Membrane systems are parallel and bioinspired systems which simulate membranes behavior when processing information. As a part of unconventional computing, P-systems are proven to be effective in solvingcomplexproblems. A software technique is presented here that obtain good results when dealing with such problems. The rules application phase is studied and updated accordingly to obtain the desired results. Certain rules are candidate to be eliminated which can make the model improving in terms of time.
Resumo:
This article presents the model and implementation of a multiagent fuzzy system (MAFS), to automate the search of solutions of incidents in telecommunications, expressed by the users in an imprecise way and, later, registered in a a knowledge base keeping their original vaguenesses and the relationships between the incidents considered as ancestors and descendants. The process of the fuzzy incidents, no matter their causes, is based on the application of a formula which transforms the intervals of the fuzzy incidents to a computational language and in the interaction between the different kinds of software agents and the humans. To search and suggest solutions of the incident originally stated, a search algorithm is used and illustrated with an example. The preliminary results obtained show the users' satisfaction, in a great percentage of the presented cases. The system is adaptive and allows to record new solutions for future users.
Resumo:
This paper discusses a novel hybrid approach for text categorization that combines a machine learning algorithm, which provides a base model trained with a labeled corpus, with a rule-based expert system, which is used to improve the results provided by the previous classifier, by filtering false positives and dealing with false negatives. The main advantage is that the system can be easily fine-tuned by adding specific rules for those noisy or conflicting categories that have not been successfully trained. We also describe an implementation based on k-Nearest Neighbor and a simple rule language to express lists of positive, negative and relevant (multiword) terms appearing in the input text. The system is evaluated in several scenarios, including the popular Reuters-21578 news corpus for comparison to other approaches, and categorization using IPTC metadata, EUROVOC thesaurus and others. Results show that this approach achieves a precision that is comparable to top ranked methods, with the added value that it does not require a demanding human expert workload to train
Resumo:
The competence evaluation promoted by the European High Education Area entails a very important methodological change that requires guiding support to help teachers carry out this new and complex task. In this regard, the Technical University of Madrid (UPM, by its Spanish acronym) has financed a series of coordinated projects with a two-fold objective: a) To develop a model for teaching and evaluating core competences that is useful and easily applicable to its different degrees, and b) to provide support to teachers by creating an area within the Website for Educational Innovation where they can search for information on the model corresponding to each core competence approved by UPM. Information available on each competence includes its definition, the formulation of indicators providing evidence on the level of acquisition, the recommended teaching and evaluation methodology, examples of evaluation rules for the different levels of competence acquisition, and descriptions of best practices. These best practices correspond to pilot tests applied to several of the academic subjects conducted at UPM in order to validate the model. This work describes the general procedure that was used and presents the model developed specifically for the problem-solving competence. Some of the pilot experiences are also summarised and their results analysed
Resumo:
The competence evaluation promoted by the European High Education Area entails a very important methodological change that requires guiding support to help teachers carry out this new and complex task. In this regard, the Technical University of Madrid (UPM, by its Spanish acronym) has financed a series of coordinated projects with a two-fold objective: a) To develop a model for teaching and evaluating core competences that is useful and easily applicable to its different degrees, and b) to provide support to teachers by creating an area within the Website for Educational Innovation where they can search for information on the model corresponding to each core competence approved by UPM. Information available on each competence includes its definition, the formulation of indicators providing evidence on the level of acquisition, the recommended teaching and evaluation methodology, examples of evaluation rules for the different levels of competence acquisition, and descriptions of best practices. These best practices correspond to pilot tests applied to several of the academic subjects conducted at UPM in order to validate the model. This work describes the general procedure that was used and presents the model developed specifically for the problem-solving competence. Some of the pilot experiences are also summarised and their results analysed
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
At present, many countries allow citizens or entities to interact with the government outside the telematic environment through a legal representative who is granted powers of representation. However, if the interaction takes place through the Internet, only primitive mechanisms of representation are available, and these are mainly based on non-dynamic offline processes that do not enable quick and easy identity delegation. This paper proposes a system of dynamic delegation of identity between two generic entities that can solve the problem of delegated access to the telematic services provided by public authorities. The solution herein is based on the generation of a delegation token created from a proxy certificate that allows the delegating entity to delegate identity to another on the basis of a subset of its attributes as delegator, while also establishing in the delegation token itself restrictions on the services accessible to the delegated entity and the validity period of delegation. Further, the paper presents the mechanisms needed to either revoke a delegation token or to check whether a delegation token has been revoked. Implications for theory and practice and suggestions for future research are discussed.
Resumo:
This paper describes a proposal of a language called Link which has been designed to formalize and operationalize problem solving strategies. This language is used within a software environment called KSM (Knowledge Structure Manager) which helps developers in formulating and operationalizing structured knowledge models. The paper presents both its syntax and dynamics, and gives examples of well-known problem-solving strategies of reasoning formulated using this language.
Resumo:
This paper presents some brief considerations on the role of Computational Logic in the construction of Artificial Intelligence systems and in programming in general. It does not address how the many problems in AI can be solved but, rather more modestly, tries to point out some advantages of Computational Logic as a tool for the AI scientist in his quest. It addresses the interaction between declarative and procedural views of programs (deduction and action), the impact of the intrinsic limitations of logic, the relationship with other apparently competing computational paradigms, and finally discusses implementation-related issues, such as the efficiency of current implementations and their capability for efficiently exploiting existing and future sequential and parallel hardware. The purpose of the discussion is in no way to present Computational Logic as the unique overall vehicle for the development of intelligent systems (in the firm belief that such a panacea is yet to be found) but rather to stress its strengths in providing reasonable solutions to several aspects of the task.
Resumo:
The analysis of concurrent constraint programs is a challenge due to the inherently concurrent behaviour of its computational model. However, most implementations of the concurrent paradigm can be viewed as a computation with a fixed scheduling rule which suspends some goals so that their execution is postponed until some condition awakens them. For a certain kind of properties, an analysis defined in these terms is correct. Furthermore, it is much more tractable, and in addition can make use of existing analysis technology for the underlying fixed computation rule. We show how this can be done when the starting point is a framework for the analysis of sequential programs. The resulting analysis, which incorporates suspensions, is adequate for concurrent models where concurrency is localized, e.g. the Andorra model. We refine the analysis for this particular case. Another model in which concurrency is preferably encapsulated, and thus suspensions are local to parts of the computation, is that of CIAO. Nonetheless, the analysis scheme can be generalized to models with global concurrency. We also sketch how this could be done, and we show how the resulting analysis framework could be used for analyzing typical properties, such as suspensión freeness.
Resumo:
We present in this paper a neural-like membrane system solving the SAT problem in linear time. These neural Psystems are nets of cells working with multisets. Each cell has a finite state memory, processes multisets of symbol-impulses, and can send impulses (?excitations?) to the neighboring cells. The maximal mode of rules application and the replicative mode of communication between cells are at the core of the eficiency of these systems.
Resumo:
In this paper we propose four approximation algorithms (metaheuristic based), for the Minimum Vertex Floodlight Set problem. Urrutia et al. [9] solved the combinatorial problem, although it is strongly believed that the algorithmic problem is NP-hard. We conclude that, on average, the minimum number of vertex floodlights needed to illuminate a orthogonal polygon with n vertices is n/4,29.
Resumo:
Este trabajo propone una serie de algoritmos con el objetivo de extraer información de conjuntos de datos con redes de neuronas. Se estudian dichos algoritmos con redes de neuronas Enhenced Neural Networks (ENN), debido a que esta arquitectura tiene algunas ventajas cuando se aproximan funciones mediante redes neuronales. En la red ENN los pesos de la matriz principal varián con cada patrón, por lo que se comete un error menor en la aproximación. Las redes de neuronas ENN reúnen la información en los pesos de su red auxiliar, se propone un método para obtener información de la red a través de dichos pesos en formas de reglas y asignando un factor de certeza de dichas reglas. La red ENN obtiene un error cuadrático medio menor que el error teórico de una aproximación matemática por ejemplo mediante polinomios de Taylor. Se muestra como una red ENN, entrenada a partir un conjunto de patrones obtenido de una función de variables reales, sus pesos asociados tienen unas relaciones similares a las que se veri_can con las variables independientes con dicha función de variables reales. Las redes de neuronas ENN aproximan polinomios, se extrae conocimiento de un conjunto de datos de forma similar a la regresión estadística, resolviendo de forma más adecuada el problema de multicolionalidad en caso de existir. Las relaciones a partir de los pesos asociados de la matriz de la red auxiliar se obtienen similares a los coeficientes de una regresión para el mismo conjunto numérico. Una red ENN entrenada a partir de un conjunto de datos de una función boolena extrae el conocimiento a partir de los pesos asociados, y la influencia de las variables de la regla lógica de la función booleana, queda reejada en esos pesos asociados a la red auxiliar de la red ENN. Se plantea una red de base radial (RBF) para la clasificación y predicción en problemas forestales y agrícolas, obteniendo mejores resultados que con el modelo de regresión y otros métodos. Los resultados con una red RBF mejoran al método de regresión si existe colinealidad entre los datos que se dispone y no son muy numerosos. También se detecta que variables tienen más importancia en virtud de la variable pronóstico. Obteniendo el error cuadrático medio con redes RBF menor que con otros métodos, en particular que con el modelo de regresión. Abstract A series of algorithms is proposed in this study aiming at the goal of producing information about data groups with a neural network. These algorithms are studied with Enheced Neural Networks (ENN), owing to the fact that this structure shows sever advantages when the functions are approximated by neural networks. Main matrix weights in th ENN vary on each pattern; so, a smaller error is produced when approximating. The neural network ENN joins the weight information contained in their auxiliary network. Thus, a method to obtain information on the network through those weights is proposed by means of rules adding a certainty factor. The net ENN obtains a mean squared error smaller than the theorical one emerging from a mathematical aproximation such as, for example, by means of Taylor's polynomials. This study also shows how in a neural network ENN trained from a set of patterns obtained through a function of real variables, its associated weights have relationships similar to those ones tested by means of the independent variables connected with such functions of real variables. The neural network ENN approximates polynomials through it information about a set of data may be obtained in a similar way than through statistical regression, solving in this way possible problems of multicollinearity in a more suitable way. Relationships emerging from the associated weights in the auxiliary network matrix obtained are similar to the coeficients corresponding to a regression for the same numerical set. A net ENN trained from a boolean function data set obtains its information from its associated weights. The inuence of the variables of the boolean function logical rule are reected on those weights associated to the net auxiliar of the ENN. A radial basis neural networks (RBF) for the classification and prediction of forest and agricultural problems is proposed. This scheme obtains better results than the ones obtained by means of regression and other methods. The outputs with a net RBF better the regression method if the collineality with the available data and their amount is not very large. Detection of which variables are more important basing on the forecast variable can also be achieved, obtaining a mean squared error smaller that the ones obtained through other methods, in special the one produced by the regression pattern.
Resumo:
The concept of unreliable failure detector was introduced by Chandra and Toueg as a mechanism that provides information about process failures. This mechanism has been used to solve several agreement problems, such as the consensus problem. In this paper, algorithms that implement failure detectors in partially synchronous systems are presented. First two simple algorithms of the weakest class to solve the consensus problem, namely the Eventually Strong class (⋄S), are presented. While the first algorithm is wait-free, the second algorithm is f-resilient, where f is a known upper bound on the number of faulty processes. Both algorithms guarantee that, eventually, all the correct processes agree permanently on a common correct process, i.e. they also implement a failure detector of the class Omega (Ω). They are also shown to be optimal in terms of the number of communication links used forever. Additionally, a wait-free algorithm that implements a failure detector of the Eventually Perfect class (⋄P) is presented. This algorithm is shown to be optimal in terms of the number of bidirectional links used forever.