3 resultados para Solar Powered UAV
em Universidad Politécnica de Madrid
Resumo:
Solar Decathlon Europe (SDE) is an international multidisciplinary competition in which 20 universityteams build and operate energy-efficient solar-powered houses. The aim of SDE is not only scientificbut also educational and divulgative, making visitors to understand the problems presented by realengineering applications and architecture. From a research perspective, the energy data gathered dur-ing the competition constitutes a very promising information for the analysis and understanding of thephotovoltaic systems, grid structures, energy balances and energy efficiency of the set of houses. Thisarticle focuses on the electrical energy components of SDE competition, the energy performance of thehouses and the strategies and behaviors followed by the teams. The rules evaluate the houses? electricalenergy self-sufficiency by looking at the electricity autonomy in terms of aggregated electrical energybalance; the temporary generation-consumption profile pattern correlation; and the use of electricityper measurable area. Although the houses are evaluated under the same climatological and consump-tion conditions, production results are very different due to the specific engineering solutions (differentelectrical topologies, presence or absence of batteries, diverse photovoltaic module solutions, etc.)
Resumo:
Young trees transplanted from nursery into open field require a minimum amount of soil moisture to successfully root in their new location, especially in dry-climate areas. One possibility is to obtain the required water from air moisture. This can be achieved by reducing the temperature of a surface below the air dew point temperature, inducing water vapor condensation on the surface. The temperature of a surface can be reduced by applying the thermoelectric effect, with Peltier modules powered by electricity. Here, we present a system that generates electricity with a solar photovoltaic module, stores it in a battery, and finally, it uses the electricity at the moment in which air humidity and temperature are optima to maximize water condensation while minimizing energy consumption. Also, a method to reduce the evaporation of the condensed water is proposed. The objective of the system, rather than irrigating young plants in such a degree as to boost their growth, is to maintain them alive in the dryer periods.
Resumo:
Young trees transplanted from nursery into open field require a minimum amount of soil moisture to successfully root in their new location, especially in dry-climate areas. One possibility is to obtain the required water from air moisture. This can be achieved by reducing the temperature of a surface below the air dew point temperature, inducing water vapor condensation on the surface. The temperature of a surface can be reduced by applying the thermoelectric effect, with Peltier modules powered by electricity. Here, we present a system that generates electricity with a solar photovoltaic module, stores it in a battery, and finally, uses the electricity at the moment in which air humidity and temperature are optimal to maximize water condensation while minimizing energy consumption. Also, a method to reduce the evaporation of the condensed water is proposed. The objective of the system is to sustain young plants in drier periods, rather than exclusively irrigating young plants to boost their growth.