26 resultados para Solar Plants

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of photovoltaic experimental plants in engineering educational buildings contributes to an increase in acceptance of this technology by future engineers. There are some photovoltaic (PV) systems in educational buildings in Spain, but they are usually limited to buildings in relation to electrical technologies or research areas. They are not common in other educational or official buildings. This paper presents the project of a grid-connected solar plant with two main objectives. First, different PV module technologies will be compared. Second, an emphasis on agronomical areas in educational settings will be reviewed in an attempt to facilitate student engagement in the use of the power plant. The system is grid-connected in order to pay-back the investment in the plant. In fact the electricity generated by the plant will be used by the installations of the building, as it is the closest consumer. This work intends to approximate photovoltaic technology to university degrees not directly related with it and at the same time research in comparison of systems with different technologies. This is a good example of an solar plant for both optimum production and educational purposes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The heterogeneous incoming heat flux in solar parabolic trough absorber tubes generates huge temperature difference in each pipe section. Helical internal fins can reduce this effect, homogenising the temperature profile and reducing thermal stress with the drawback of increasing pressure drop. Another effect is the decreasing of the outer surface temperature and thermal losses, improving the thermal efficiency of the collector. The application of internal finned tubes for the design of parabolic trough collectors is analysed with computational fluid dynamics tools. Our numerical approach has been qualified with the computational estimation of reported experimental data regarding phenomena involved in finned tube applications and solar irradiation of parabolic trough collector. The application of finned tubes to the design of parabolic trough collectors must take into account issues as the pressure losses, thermal losses and thermo-mechanical stress, and thermal fatigue. Our analysis shows an improvement potential in parabolic trough solar plants efficiency by the application of internal finned tubes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many efforts have been made in order to adequate the production of a solar thermal collector field to the consumption of domestic hot water of the inhabitants of a building. In that sense, much has been achieved in different domains: research agencies, government policies and manufacturers. However, most of the design rules of the solar plants are based on steady state models, whereas solar irradiance, consumption and thermal accumulation are inherently transient processes. As a result of this lack of physical accuracy, thermal storage tanks are sometimes left to be as large as the designer decides without any aforementioned precise recommendation. This can be a problem if solar thermal systems are meant to be implemented in nowadays buildings, where there is a shortage of space. In addition to that, an excessive storage volume could not result more efficient in many residential applications, but costly, extreme in space consumption and in some cases too heavy. A proprietary transient simulation program has been developed and validated with a detailed measurement campaign in an experimental facility. In situ environmental data have been obtained through a whole year of operation. They have been gathered at intervals of 10 min for a solar plant of 50 m2 with a storage tank of 3 m3, including the equipment for domestic hot water production of a typical apartment building. This program has been used to obtain the design and dimensioning criteria of DHW solar plants under daily transient conditions throughout a year and more specifically the size of the storage tank for a multi storey apartment building. Comparison of the simulation results with the current Spanish regulation applicable, “Código Técnico de la Edificación” (CTE 2006), offers fruitful details and establishes solar facilities dimensioning criteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper has analysed the effect of the utilization of internal finned tubes for the design of parabolic trough collectors with computational fluid dynamics tools. Our numerical approach has been qualified with the computational estimation of reported experimental data regarding phenomena involved in finned tube applications and solar irradiation of parabolic trough collector. The application of finned tubes to the design of parabolic trough collectors must take into account features as the pressure losses, thermal losses and thermo-mechanical stress and thermal fatigue. Our analysis shows an improvement potential in parabolic trough solar plants efficiency by the application of internal finned tubes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In addition to revealing the hidden link between products or consumption patterns of populations and their needs in terms of water resources, the water footprint (WF) indicator generates new debates and solutions on water management at basin scale. This paper analyses the green and blue WF of the Guadalquivir basin and its integration with environmental water consumption, with a special emphasis on the WF from groundwater and its consequences on current and future depletion of surface water. In a normal year, green WF (agriculture and pastures) amounts to 190 mm on a total green water consumption of 410 mm, while the blue WF (50 mm) represents half of the total blue water flows. This constitutes a first overview and alternative interpretations of the WF as human water appropriation are introduced. The blue WF is almost entirely associated to agriculture (40 mm). The presentation of its evolution over the period 1997?2008 reveals the rising WF from groundwater (13 mm in 2008), 86% being current consumption of surface flows. This evolution is particularly ascribed to the recent development of irrigated olive groves from groundwater. To prevent a higher pressure on the environment, this new use, like all others (thermo-solar plants, tourism, etc.), could have been obtained from the reallocation of water from crops with low water productivity. It means that water is not lacking in the Guadalquivir basin if the governance setting integrates more flexibility and equity in the allocation of water to address climatic variability and the emergence of new demands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grid connected solar plants are a good opportunity for their use for research as a secondary objective. In countries were feed-in tariffs are still active, it is possible to include in the design of the solar plant elements for its use for research. In the case of the solar plant presented here both objectives are covered. The solar plant of this work is formed by PV modules of three different technologies: Multicrystalline, amorphous and CdTe. In one part of the solar plant, the three technologies are working at the same conditions, not only ambient conditions but also similar voltage and current input to the inverters. Both the commercial and the experimental parts of the solar plant have their own independent inverters with their meters but are finally connected to the same meter to inject. In this work we analyse the results for the first year of operation of the experimental solar plant. Productions of three different technologies in exactly the same conditions are compared and presented. According to the results, all the three technologies have conversion efficiencies dropping when the temperature increases. Amorphous module experiences the lesser reduction, whereas the multicrystalline module suffers the most.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Field data of soiling energy losses on PV plants are scarce. Furthermore, since dirt type and accumulation vary with the location characteristics (climate, surroundings, etc.), the available data on optical losses are, necessarily, site dependent. This paper presents field measurements of dirt energy losses (dust) and irradiance incidence angle losses along 2005 on a solar-tracking PV plant located south of Navarre (Spain). The paper proposes a method to calculate these losses based on the difference between irradiance measured by calibrated cells on several trackers of the PV plant and irradiance calculated from measurements by two pyranometers (one of them incorporating a shadow ring) regularly cleaned. The equivalent optical energy losses of an installation incorporating fixed horizontal modules at the same location have been calculated as well. The effect of dirt on both types of installations will accordingly be compared.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solar thermal power plants are usually installed in locations with high yearly average solar radiation, often deserts. In such conditions, cooling water required for thermodynamic cycles is rarely available. Moreover, when solar radiation is high, ambient temperature is very high as well; this leads to excessive condensation temperature, especially when air-condensers are used, and decreases the plant efficiency. However, temperature variation in deserts is often very high, which drives to relatively low temperatures during the night. This fact can be exploited with the use of a closed cooling system, so that the coolant (water) is chilled during the night and store. Chilled water is then used during peak temperature hours to cool the condenser (dry cooling), thus enhancing power output and efficiency. The present work analyzes the performance improvement achieved by night thermal cool storage, compared to its equivalent air cooled power plant. Dry cooling is proved to be energy-effective for moderately high day–night temperature differences (20 °C), often found in desert locations. The storage volume requirement for different power plant efficiencies has also been studied, resulting on an asymptotic tendency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

System Advisor Model is a software tool develped by National Renewable Laboratory (NREL), Department Of Energy, USA to design Solar Power Plants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The supercritical Rankine power cycle offers a net improvement in plant efficiency compared with a subcritical Rankine cycle. For fossil power plants the minimum supercritical steam turbine size is about 450MW. A recent study between Sandia National Laboratories and Siemens Energy, Inc., published on March 2013, confirmed the feasibility of adapting the Siemens turbine SST-900 for supercritical steam in concentrated solar power plants, with a live steam conditions 230-260 bar and output range between 140-200 MWe. In this context, this analysis is focused on integrating a line-focus solar field with a supercritical Rankine power cycle. For this purpose two heat transfer fluids were assessed: direct steam generation and molten salt Hitec XL. To isolate solar field from high pressure supercritical water power cycle, an intermediate heat exchanger was installed between linear solar collectors and balance of plant. Due to receiver selective coating temperature limitations, turbine inlet temperature was fixed 550ºC. The design-point conditions were 550ºC and 260 bar at turbine inlet, and 165 MWe Gross power output. Plant performance was assessed at design-point in the supercritical power plant (between 43-45% net plant efficiency depending on balance of plantconfiguration), and in the subcritical plant configuration (~40% net plant efficiency). Regarding the balance of plant configuration, direct reheating was adopted as the optimum solution to avoid any intermediate heat exchanger. One direct reheating stage between high pressure turbine and intermediate pressure turbine is the common practice; however, General Electric ultrasupercritical(350 bar) fossil power plants also considered doubled-reheat applications. In this study were analyzed heat balances with single-reheat, double-reheat and even three reheating stages. In all cases were adopted the proper reheating solar field configurations to limit solar collectors pressure drops. As main conclusion, it was confirmed net plant efficiency improvements in supercritical Rankine line-focus (parabolic or linear Fresnel) solar plant configurations are mainly due to the following two reasons: higher number of feed-water preheaters (up to seven)delivering hotter water at solar field inlet, and two or even three direct reheating stages (550ºC reheating temperature) in high or intermediate pressure turbines. However, the turbine manufacturer should confirm the equipment constrains regarding reheating stages and number of steam extractions to feed-water heaters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Linear Fresnel collectors are identified as a technology that should play a main role in order to reduce cost of Concentrating Solar Power. An optical and thermal analysis of the different blocks of the solar power plant is carried out, where Fresnel arrays are compared with the most extended linear technology: parabolic trough collectors. It is demonstrated that the optical performance of Fresnel array is very close to that of PTC, with similar values of maximum flux intensities. In addition, if the heat carrier fluid flows in series by the tubes of the receiver, relatively high thermal efficiencies are achieved. Thus, an annual solar to electricity efficiency of 19% is expected, which is similar to the state of the art in PTCs; this is done with a reduction of costs, thanks to lighter structures, that drives to an estimation of LCOE of around 6.5 c€/kWh.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Young trees transplanted from nursery into open field require a minimum amount of soil moisture to successfully root in their new location, especially in dry-climate areas. One possibility is to obtain the required water from air moisture. This can be achieved by reducing the temperature of a surface below the air dew point temperature, inducing water vapor condensation on the surface. The temperature of a surface can be reduced by applying the thermoelectric effect, with Peltier modules powered by electricity. Here, we present a system that generates electricity with a solar photovoltaic module, stores it in a battery, and finally, it uses the electricity at the moment in which air humidity and temperature are optima to maximize water condensation while minimizing energy consumption. Also, a method to reduce the evaporation of the condensed water is proposed. The objective of the system, rather than irrigating young plants in such a degree as to boost their growth, is to maintain them alive in the dryer periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper details an investigation into the appearance of hot-spots in two large grid-connected photovoltaics (PV) plants, which were detected after the visual inspection of trackers whose energy output was decreasing at anomalous rate. Detected hot-spots appeared not only in the solar cells but also in resistive solder bonds (RSB) between cells and contact ribbons. Both types cause similar irreversible damage to the PV modules, but the latter are the main responsible for the detected decrease in energy output, which was confirmed in an experimental testing campaign. The results of this investigation, for example, how hot-spots were detected or their impact on the output power of PV modules, may be of interest for the routine maintenance of large grid-connected PV plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to complement ISFOC’s characterization capabilities, a Helios 3198 CPV Solar Simulator was installed in summer 2010. This Solar Simulator, based on a parabolic mirror and a high-intensity, small area Xenon flash lamp was developed by the Instituto de Energía Solar in Madrid [1] and is manufactured and distributed by Soldaduras Avanzadas [2]. This simulator is used not only for R&D purposes, but as a quality control tool for incoming modules that are to be installed in ISFOC’s CPV plants. In this paper we will discuss the results of recent measurements of close to 5000 modules, the entire production of modules corresponding to a small CPV power plant (200 kWp). We scrutinize the resultant data for signs of drift in the measurements, and analyze the light quality before and after, to check for changes in spectrum or spatial uniformity.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Young trees transplanted from nursery into open field require a minimum amount of soil moisture to successfully root in their new location, especially in dry-climate areas. One possibility is to obtain the required water from air moisture. This can be achieved by reducing the temperature of a surface below the air dew point temperature, inducing water vapor condensation on the surface. The temperature of a surface can be reduced by applying the thermoelectric effect, with Peltier modules powered by electricity. Here, we present a system that generates electricity with a solar photovoltaic module, stores it in a battery, and finally, uses the electricity at the moment in which air humidity and temperature are optimal to maximize water condensation while minimizing energy consumption. Also, a method to reduce the evaporation of the condensed water is proposed. The objective of the system is to sustain young plants in drier periods, rather than exclusively irrigating young plants to boost their growth.