6 resultados para Soil characterization

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite the growth of the offshore wind industry, there are currently doubts relating to the design of wind facilities in the sea. This paper expounds current, already identified structural uncertainties: problems for soil characterization and transition piece (TP) design. This document also introduces new doubts or issues to be researched in the near future in this field (wave theory, scour process, wave load actions, scale difficulty, etc.), not as yet identified due to the scarce experience in the offshore wind industry. With this in mind, technical offshore wind standards related to foundation design have been reviewed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El estudio de la estructura del suelo es de vital importancia en diferentes campos de la ciencia y la tecnología. La estructura del suelo controla procesos físicos y biológicos importantes en los sistemas suelo-planta-microorganismos. Estos procesos están dominados por la geometría de la estructura del suelo, y una caracterización cuantitativa de la heterogeneidad de la geometría del espacio poroso es beneficiosa para la predicción de propiedades físicas del suelo. La tecnología de la tomografía computerizada de rayos-X (CT) nos permite obtener imágenes digitales tridimensionales del interior de una muestra de suelo, proporcionando información de la geometría de los poros del suelo y permitiendo el estudio de los poros sin destruir las muestras. Las técnicas de la geometría fractal y de la morfología matemática se han propuesto como una poderosa herramienta para analizar y cuantificar características geométricas. Las dimensiones fractales del espacio poroso, de la interfaz poro-sólido y de la distribución de tamaños de poros son indicadores de la complejidad de la estructura del suelo. Los funcionales de Minkowski y las funciones morfológicas proporcionan medios para medir características geométricas fundamentales de los objetos geométricos tridimensionales. Esto es, volumen, superficie, curvatura media de la superficie y conectividad. Las características del suelo como la distribución de tamaños de poros, el volumen del espacio poroso o la superficie poro-solido pueden ser alteradas por diferentes practicas de manejo de suelo. En este trabajo analizamos imágenes tomográficas de muestras de suelo de dos zonas cercanas con practicas de manejo diferentes. Obtenemos un conjunto de medidas geométricas, para evaluar y cuantificar posibles diferencias que el laboreo pueda haber causado en el suelo. ABSTRACT The study of soil structure is of vital importance in different fields of science and technology. Soil structure controls important physical and biological processes in soil-plant-microbial systems. Those processes are dominated by the geometry of soil pore structure, and a quantitative characterization of the spatial heterogeneity of the pore space geometry is beneficial for prediction of soil physical properties. The technology of X-ray computed tomography (CT) allows us to obtain three-dimensional digital images of the inside of a soil sample providing information on soil pore geometry and enabling the study of the pores without disturbing the samples. Fractal geometry and mathematical morphological techniques have been proposed as powerful tools to analyze and quantify geometrical features. Fractal dimensions of pore space, pore-solid interface and pore size distribution are indicators of soil structure complexity. Minkowski functionals and morphological functions provide means to measure fundamental geometrical features of three-dimensional geometrical objects, that is, volume, boundary surface, mean boundary surface curvature, and connectivity. Soil features such as pore-size distribution, pore space volume or pore-solid surface can be altered by different soil management practices. In this work we analyze CT images of soil samples from two nearby areas with contrasting management practices. We performed a set of geometrical measures, some of them from mathematical morphology, to assess and quantify any possible difference that tillage may have caused on the soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prediction of train induced vibration levels in structures close to railway tracks before track construction starts is important in order to avoid having to implement costly mitigation measures afterwards. The used models require an accurate characterization of the propagation medium i.e. the soil layers. To this end the spectral analysis of surface waves (SASW) method has been chosen among the active surface waves techniques available. As dynamic source a modal sledge hammer has been used. The generated vibrations have been measured at known offsets by means of several accelerometers. There are many parameters involved in estimating the experimental dispersion curve and, later on, thickness and propagation velocities of the different layers. Tests have been carried out at the Segovia railway station. Its main building covers some of the railway tracks and vibration problems in the building should be avoided. In the paper these tests as well as the influence of several parameters on the estimated soil profile will be detailed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diffusion controls the gaseous transport process in soils when advective transport is almost null. Knowledge of the soil structure and pore connectivity are critical issues to understand and modelling soil aeration, sequestration or emission of greenhouse gasses, volatilization of volatile organic chemicals among other phenomena. In the last decades these issues increased our attention as scientist have realize that soil is one of the most complex materials on the earth, within which many biological, physical and chemical processes that support life and affect climate change take place. A quantitative and explicit characterization of soil structure is difficult because of the complexity of the pore space. This is the main reason why most theoretical approaches to soil porosity are idealizations to simplify this system. In this work, we proposed a more realistic attempt to capture the complexity of the system developing a model that considers the size and location of pores in order to relate them into a network. In the model we interpret porous soils as heterogeneous networks where pores are represented by nodes, characterized by their size and spatial location, and the links representing flows between them. In this work we perform an analysis of the community structure of porous media of soils represented as networks. For different real soils samples, modelled as heterogeneous complex networks, spatial communities of pores have been detected depending on the values of the parameters of the porous soil model used. These types of models are named as Heterogeneous Preferential Attachment (HPA). Developing an exhaustive analysis of the model, analytical solutions are obtained for the degree densities and degree distribution of the pore networks generated by the model in the thermodynamic limit and shown that the networks exhibit similar properties to those observed in other complex networks. With the aim to study in more detail topological properties of these networks, the presence of soil pore community structures is studied. The detection of communities of pores, as groups densely connected with only sparser connections between groups, could contribute to understand the mechanisms of the diffusion phenomena in soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new hazard-consistent ground motion characterization of the Itoiz dam site, located in Northern Spain. Firstly, we propose a methodology with different approximation levels to the expected ground motion at the dam site. Secondly, we apply this methodology taking into account the particular characteristics of the site and of the dam. Hazard calculations were performed following the Probabilistic Seismic Hazard Assessment method using a logic tree, which accounts for different seismic source zonings and different ground-motion attenuation relationships. The study was done in terms of peak ground acceleration and several spectral accelerations of periods coinciding with the fundamental vibration periods of the dam. In order to estimate these ground motions we consider two different dam conditions: when the dam is empty (T = 0.1 s) and when it is filled with water to its maximum capacity (T = 0.22 s). Additionally, seismic hazard analysis is done for two return periods: 975 years, related to the project earthquake, and 4,975 years, identified with an extreme event. Soil conditions were also taken into account at the site of the dam. Through the proposed methodology we deal with different forms of characterizing ground motion at the study site. In a first step, we obtain the uniform hazard response spectra for the two return periods. In a second step, a disaggregation analysis is done in order to obtain the controlling earthquakes that can affect the dam. Subsequently, we characterize the ground motion at the dam site in terms of specific response spectra for target motions defined by the expected values SA (T) of T = 0.1 and 0.22 s for the return periods of 975 and 4,975 years, respectively. Finally, synthetic acceleration time histories for earthquake events matching the controlling parameters are generated using the discrete wave-number method and subsequently analyzed. Because of the short relative distances between the controlling earthquakes and the dam site we considered finite sources in these computations. We conclude that directivity effects should be taken into account as an important variable in this kind of studies for ground motion characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregates provide physical microenvironments for microorganisms, the vital actors of soil systems, and thus play a major role as both, an arena and a product of soil carbon stabilization and dynamics. The surface of an aggregate is what enables exchange of the materials and air and water fluxes between aggregate exterior and interior regions. We made use of 3D images from X-ray CT of aggregates and mathematical morphology to provide an exhaustive quantitative description of soil aggregate morphology that includes both intra-aggregate pore space structure and aggregate surface features. First, the evolution of Minkowski functionals (i.e. volume, boundary surface, curvature and connectivity) for successive dilations of the solid part of aggregates was investigated to quantify its 3D geometrical features. Second, the inner pore space was considered as the object of interest. We devised procedures (a) to define the ends of the accessible pores that are connected to the aggregate surface and (b) to separate accessible and inaccessible porosity. Geometrical Minkowski functionals of the intra-aggregate pore space provide the exhaustive characterization of the inner structure of the aggregates. Aggregates collected from two different soil treatments were analyzed to explore the utility of these morphological tools in capturing the impact on their morphology of two different soil managements, i.e. conventional tillage management, and native succession vegetation treatment. The quantitative tools of mathematical morphology distinguished differences in patterns of aggregate structure associated to the different soil managements.