59 resultados para Software-Management
em Universidad Politécnica de Madrid
Resumo:
PAMELA (Phased Array Monitoring for Enhanced Life Assessment) SHMTM System is an integrated embedded ultrasonic guided waves based system consisting of several electronic devices and one system manager controller. The data collected by all PAMELA devices in the system must be transmitted to the controller, who will be responsible for carrying out the advanced signal processing to obtain SHM maps. PAMELA devices consist of hardware based on a Virtex 5 FPGA with a PowerPC 440 running an embedded Linux distribution. Therefore, PAMELA devices, in addition to the capability of performing tests and transmitting the collected data to the controller, have the capability of perform local data processing or pre-processing (reduction, normalization, pattern recognition, feature extraction, etc.). Local data processing decreases the data traffic over the network and allows CPU load of the external computer to be reduced. Even it is possible that PAMELA devices are running autonomously performing scheduled tests, and only communicates with the controller in case of detection of structural damages or when programmed. Each PAMELA device integrates a software management application (SMA) that allows to the developer downloading his own algorithm code and adding the new data processing algorithm to the device. The development of the SMA is done in a virtual machine with an Ubuntu Linux distribution including all necessary software tools to perform the entire cycle of development. Eclipse IDE (Integrated Development Environment) is used to develop the SMA project and to write the code of each data processing algorithm. This paper presents the developed software architecture and describes the necessary steps to add new data processing algorithms to SMA in order to increase the processing capabilities of PAMELA devices.An example of basic damage index estimation using delay and sum algorithm is provided.
Resumo:
En el presente trabajo se plantea el estudio de las características acústicas del ladrillo artesanal e industrial fabricado en Ecuador, considerando las características particulares respecto a la calidad de la materia prima, además del hecho de que a nivel artesanal su producción no está regularizada, si bien existen una serie de reglamentos no siempre son acatados por el productor artesanal, lo que hace que presente propiedades particulares. La idea principal de este trabajo es generar datos referenciales e iniciales, sobre las propiedades acústicas del ladrillo artesanal e industrial ya que en Ecuador, no existe ningún estudio de esta naturaleza sobre el tema. Además de crear los mecanismos necesarios para una posible ampliación del estudio a otros materiales propios de Ecuador que permitan generar una base de datos sobre sus propiedades acústicas. Otro aspecto importante sobre esta investigación es el familiarizarse con el uso de técnicas de medición, manejo de equipamiento y software diverso, del manejo y comparación de normativa. ABSTRACT. The purpose of this paper is the study of the acoustic characteristics of artisanal and industrial brick manufactured in Ecuador, considering the particular characteristics regarding the quality of raw materials, besides the fact that artisanal production level is unregulated, although there are a number of regulations are not always complied with by the artisan producer, which makes this particular properties. The main idea of this paper is to generate reference and baseline data on the acoustic properties of artisanal and industrial brick as in Ecuador, there is no study of this nature on the subject. In addition to creating the necessary mechanisms for a possible extension of the study to other materials from Ecuador that will generate a database on its acoustic properties. Another important aspect of this research is to get familiar with the use of measurement techniques, equipment and miscellaneous management software, management and comparison of legislation.
Resumo:
Software Configuration Management (SCM) techniques have been considered the entry point to rigorous software engineering, where multiple organizations cooperate in a decentralized mode to save resources, ensure the quality of the diversity of software products, and manage corporate information to get a better return of investment. The incessant trend of Global Software Development (GSD) and the complexity of implementing a correct SCM solution grow not only because of the changing circumstances, but also because of the interactions and the forces related to GSD activities. This paper addresses the role SCM plays in the development of commercial products and systems, and introduces a SCM reference model to describe the relationships between the different technical, organizational, and product concerns any software development company should support in the global market.
Resumo:
The acquisition of the information system technologies using the services of an external supplier could be the the best options to reduce the implementation and maintenance cost of software solutions, and allows a company to improve the efficient use of its resources. The focus of this paper is to outline a methodology structure for the software acquisition management. The methodology proposed in this paper is the result of the study and the convergence of the weakness and strengths of some models (CMMI, SA-CMM, ISO/IEC TR 15504, COBIT, and ITIL) that include the software acquisition process.
Resumo:
This research is concerned with the experimental software engineering area, specifically experiment replication. Replication has traditionally been viewed as a complex task in software engineering. This is possibly due to the present immaturity of the experimental paradigm applied to software development. Researchers usually use replication packages to replicate an experiment. However, replication packages are not the solution to all the information management problems that crop up when successive replications of an experiment accumulate. This research borrows ideas from the software configuration management and software product line paradigms to support the replication process. We believe that configuration management can help to manage and administer information from one replication to another: hypotheses, designs, data analysis, etc. The software product line paradigm can help to organize and manage any changes introduced into the experiment by each replication. We expect the union of the two paradigms in replication to improve the planning, design and execution of further replications and their alignment with existing replications. Additionally, this research work will contribute a web support environment for archiving information related to different experiment replications. Additionally, it will provide flexible enough information management support for running replications with different numbers and types of changes. Finally, it will afford massive storage of data from different replications. Experimenters working collaboratively on the same experiment must all have access to the different experiments.
Resumo:
There is no empirical evidence whatsoever to support most of the beliefs on which software construction is based. We do not yet know the adequacy, limits, qualities, costs and risks of the technologies used to develop software. Experimentation helps to check and convert beliefs and opinions into facts. This research is concerned with the replication area. Replication is a key component for gathering empirical evidence on software development that can be used in industry to build better software more efficiently. Replication has not been an easy thing to do in software engineering (SE) because the experimental paradigm applied to software development is still immature. Nowadays, a replication is executed mostly using a traditional replication package. But traditional replication packages do not appear, for some reason, to have been as effective as expected for transferring information among researchers in SE experimentation. The trouble spot appears to be the replication setup, caused by version management problems with materials, instruments, documents, etc. This has proved to be an obstacle to obtaining enough details about the experiment to be able to reproduce it as exactly as possible. We address the problem of information exchange among experimenters by developing a schema to characterize replications. We will adapt configuration management and product line ideas to support the experimentation process. This will enable researchers to make systematic decisions based on explicit knowledge rather than assumptions about replications. This research will output a replication support web environment. This environment will not only archive but also manage experimental materials flexibly enough to allow both similar and differentiated replications with massive experimental data storage. The platform should be accessible to several research groups working together on the same families of experiments.
Resumo:
The aim of the paper is to discuss the use of knowledge models to formulate general applications. First, the paper presents the recent evolution of the software field where increasing attention is paid to conceptual modeling. Then, the current state of knowledge modeling techniques is described where increased reliability is available through the modern knowledge acquisition techniques and supporting tools. The KSM (Knowledge Structure Manager) tool is described next. First, the concept of knowledge area is introduced as a building block where methods to perform a collection of tasks are included together with the bodies of knowledge providing the basic methods to perform the basic tasks. Then, the CONCEL language to define vocabularies of domains and the LINK language for methods formulation are introduced. Finally, the object oriented implementation of a knowledge area is described and a general methodology for application design and maintenance supported by KSM is proposed. To illustrate the concepts and methods, an example of system for intelligent traffic management in a road network is described. This example is followed by a proposal of generalization for reuse of the resulting architecture. Finally, some concluding comments are proposed about the feasibility of using the knowledge modeling tools and methods for general application design.
Resumo:
In the last decades, software systems have become an intrinsic element in our daily lives. Software exists in our computers, in our cars, and even in our refrigerators. Today’s world has become heavily dependent on software and yet, we still struggle to deliver quality software products, on-time and within budget. When searching for the causes of such alarming scenario, we find concurrent voices pointing to the role of the project manager. But what is project management and what makes it so challenging? Part of the answer to this question requires a deeper analysis of why software project managers have been largely ineffective. Answering this question might assist current and future software project managers in avoiding, or at least effectively mitigating, problematic scenarios that, if unresolved, will eventually lead to additional failures. This is where anti-patterns come into play and where they can be a useful tool in identifying and addressing software project management failure. Unfortunately, anti-patterns are still a fairly recent concept, and thus, available information is still scarce and loosely organized. This thesis will attempt to help remedy this scenario. The objective of this work is to help organize existing, documented software project management anti-patterns by answering our two research questions: · What are the different anti-patterns in software project management? · How can these anti-patterns be categorized?
Resumo:
According to the PMBOK (Project Management Body of Knowledge), project management is “the application of knowledge, skills, tools, and techniques to project activities to meet the project requirements” [1]. Project Management has proven to be one of the most important disciplines at the moment of determining the success of any project [2][3][4]. Given that many of the activities covered by this discipline can be said that are “horizontal” for any kind of domain, the importance of acknowledge the concepts and practices becomes even more obvious. The specific case of the projects that fall in the domain of Software Engineering are not the exception about the great influence of Project Management for their success. The critical role that this discipline plays in the industry has come to numbers. A report by McKinsey & Co [4] shows that the establishment of programs for the teaching of critical skills of project management can improve the performance of the project in time and costs. As an example of the above, the reports exposes: “One defense organization used these programs to train several waves of project managers and leaders who together administered a portfolio of more than 1,000 capital projects ranging in Project management size from $100,000 to $500 million. Managers who successfully completed the training were able to cut costs on most projects by between 20 and 35 percent. Over time, the organization expects savings of about 15 percent of its entire baseline spending”. In a white paper by the PMI (Project Management Institute) about the value of project management [5], it is stated that: “Leading organizations across sectors and geographic borders have been steadily embracing project management as a way to control spending and improve project results”. According to the research made by the PMI for the paper, after the economical crisis “Executives discovered that adhering to project management methods and strategies reduced risks, cut costs and improved success rates—all vital to surviving the economic crisis”. In every elite company, a proper execution of the project management discipline has become a must. Several members of the software industry have putted effort into achieving ways of assuring high quality results from projects; many standards, best practices, methodologies and other resources have been produced by experts from different fields of expertise. In the industry and the academic community, there is a continuous research on how to teach better software engineering together with project management [4][6]. For the general practices of Project Management the PMI produced a guide of the required knowledge that any project manager should have in their toolbox to lead any kind of project, this guide is called the PMBOK. On the side of best practices 10 and required knowledge for the Software Engineering discipline, the IEEE (Institute of Electrical and Electronics Engineers) developed the SWEBOK (Software Engineering Body of Knowledge) in collaboration with software industry experts and academic researchers, introducing into the guide many of the needed knowledge for a 5-year expertise software engineer [7]. The SWEBOK also covers management from the perspective of a software project. This thesis is developed to provide guidance to practitioners and members of the academic community about project management applied to software engineering. The way used in this thesis to get useful information for practitioners is to take an industry-approved guide for software engineering professionals such as the SWEBOK, and compare the content to what is found in the PMBOK. After comparing the contents of the SWEBOK and the PMBOK, what is found missing in the SWEBOK is used to give recommendations on how to enrich project management skills for a software engineering professional. Recommendations for members of the academic community on the other hand, are given taking into account the GSwE2009 (Graduated Software Engineering 2009) standard [8]. GSwE2009 is often used as a main reference for software engineering master programs [9]. The standard is mostly based on the content of the SWEBOK, plus some contents that are considered to reinforce the education of software engineering. Given the similarities between the SWEBOK and the GSwE2009, the results of comparing SWEBOK and PMBOK are also considered valid to enrich what the GSwE2009 proposes. So in the end the recommendations for practitioners end up being also useful for the academic community and their strategies to teach project management in the context of software engineering.
Resumo:
The goal of this paper is to show the results of an on-going experience on teaching project management to grade students by following a development scheme of management related competencies on an individual basis. In order to achieve that goal, the students are organized in teams that must solve a problem and manage the development of a feasible solution to satisfy the needs of a client. The innovative component advocated in this paper is the formal introduction of negotiating and virtual team management aspects, as different teams from different universities at different locations and comprising students with different backgrounds must collaborate and compete amongst them. The different learning aspects are identified and the improvement levels are reflected in a rubric that has been designed ad hoc for this experience. Finally, the effort frameworks for the student and instructor have been established according to the requirements of the Bologna paradigms. This experience is developed through a software-based support system allowing blended learning for the theoretical and individual?s work aspects, blogs, wikis, etc., as well as project management tools based on WWW that allow the monitoring of not only the expected deliverables and the achievement of the goals but also the progress made on learning as established in the defined rubric
Resumo:
The increasing complexity of current software systems is encouraging the development of self-managed software architectures, i.e. systems capable of reconfiguring their structure at runtime to fulfil a set of goals. Several approaches have covered different aspects of their development, but some issues remain open, such as the maintainability or the scalability of self-management subsystems. Centralized approaches, like self-adaptive architectures, offer good maintenance properties but do not scale well for large systems. On the contrary, decentralized approaches, like self-organising architectures, offer good scalability but are not maintainable: reconfiguration specifications are spread and often tangled with functional specifications. In order to address these issues, this paper presents an aspect-oriented autonomic reconfiguration approach where: (1) each subsystem is provided with self-management properties so it can evolve itself and the components that it is composed of; (2) self-management concerns are isolated and encapsulated into aspects, thus improving its reuse and maintenance. Povzetek: Predstavljen je pristop s samo-preoblikovanjem programske arhitekture.
Resumo:
When a firm decides to implement ERP softwares, the resulting consequences can pervade all levels, includ- ing organization, process, control and available information. Therefore, the first decision to be made is which ERP solution must be adopted from a wide range of offers and vendors. To this end, this paper describes a methodology based on multi-criteria factors that directly affects the process to help managers make this de- cision. This methodology has been applied to a medium-size company in the Spanish metal transformation sector which is interested in updating its IT capabilities in order to obtain greater control of and better infor- mation about business, thus achieving a competitive advantage. The paper proposes a decision matrix which takes into account all critical factors in ERP selection.
Resumo:
Models are an effective tool for systems and software design. They allow software architects to abstract from the non-relevant details. Those qualities are also useful for the technical management of networks, systems and software, such as those that compose service oriented architectures. Models can provide a set of well-defined abstractions over the distributed heterogeneous service infrastructure that enable its automated management. We propose to use the managed system as a source of dynamically generated runtime models, and decompose management processes into a composition of model transformations. We have created an autonomic service deployment and configuration architecture that obtains, analyzes, and transforms system models to apply the required actions, while being oblivious to the low-level details. An instrumentation layer automatically builds these models and interprets the planned management actions to the system. We illustrate these concepts with a distributed service update operation.
Resumo:
Knowledge management is critical for the success of virtual communities, especially in the case of distributed working groups. A representative example of this scenario is the distributed software development, where it is necessary an optimal coordination to avoid common problems such as duplicated work. In this paper the feasibility of using the workflow technology as a knowledge management system is discussed, and a practical use case is presented. This use case is an information system that has been deployed within a banking environment. It combines common workflow technology with a new conception of the interaction among participants through the extension of existing definition languages.
Resumo:
This paper introduces a new emerging software component, the idea management system, which helps to gather, organise, select and manage the innovative ideas provided by the communities gathered around organisations or enterprises. We define the notion of the idea life cycle, which provides a framework for characterising tools and techniques that drive the evolution of community submitted data inside idea management systems. Furthermore, we show the dependencies between the community-created information and the enterprise processes that are a result of using idea management systems and point out the possible benefits.