5 resultados para Social and Emotion Wellbeing
em Universidad Politécnica de Madrid
Resumo:
One of the advantages of social networks is the possibility to socialize and personalize the content created or shared by the users. In mobile social networks, where the devices have limited capabilities in terms of screen size and computing power, Multimedia Recommender Systems help to present the most relevant content to the users, depending on their tastes, relationships and profile. Previous recommender systems are not able to cope with the uncertainty of automated tagging and are knowledge domain dependant. In addition, the instantiation of a recommender in this domain should cope with problems arising from the collaborative filtering inherent nature (cold start, banana problem, large number of users to run, etc.). The solution presented in this paper addresses the abovementioned problems by proposing a hybrid image recommender system, which combines collaborative filtering (social techniques) with content-based techniques, leaving the user the liberty to give these processes a personal weight. It takes into account aesthetics and the formal characteristics of the images to overcome the problems of current techniques, improving the performance of existing systems to create a mobile social networks recommender with a high degree of adaptation to any kind of user.
Resumo:
Sentiment analysis has recently gained popularity in the financial domain thanks to its capability to predict the stock market based on the wisdom of the crowds. Nevertheless, current sentiment indicators are still silos that cannot be combined to get better insight about the mood of different communities. In this article we propose a Linked Data approach for modelling sentiment and emotions about financial entities. We aim at integrating sentiment information from different communities or providers, and complements existing initiatives such as FIBO. The ap- proach has been validated in the semantic annotation of tweets of several stocks in the Spanish stock market, including its sentiment information.
Resumo:
This work sets out an innovative methodology that aims to facilitate the implementation and continuous improvement of Social Responsibility. It is a methodology that takes account of strategic-economic, social and environmental questions and allows measuring the impact of each of these aspects on the stakeholders and on each of the value areas. It can be extrapolated to all kinds of organisations regardless of their size and sector and admits scaleable models. A marked feature that sets it aside from other methodologies is that it eliminates subjectivity from the qualitative aspects and introduces an algorithm to quantify them.
Resumo:
Extracting opinions and emotions from text is becoming increasingly important, especially since the advent of micro-blogging and social networking. Opinion mining is particularly popular and now gathers many public services, datasets and lexical resources. Unfortunately, there are few available lexical and semantic resources for emotion recognition that could foster the development of new emotion aware services and applications. The diversity of theories of emotion and the absence of a common vocabulary are two of the main barriers to the development of such resources. This situation motivated the creation of Onyx, a semantic vocabulary of emotions with a focus on lexical resources and emotion analysis services. It follows a linguistic Linked Data approach, it is aligned with the Provenance Ontology, and it has been integrated with the Lexicon Model for Ontologies (lemon), a popular RDF model for representing lexical entries. This approach also means a new and interesting way to work with different theories of emotion. As part of this work, Onyx has been aligned with EmotionML and WordNet-Affect.
Resumo:
Social learning processes can be the basis of a method of agricultural innovation that involves expert and empirical knowledge. In this sense, the objective of this study was to determine the effectiveness and sustainability of an innovation process, understood as social learning, in a group of small farmers in the southern highlands of Peru. Innovative proposals and its permanence three years after the process finished were evaluated. It was observed that innovation processes generated are maintained over time; however, new innovations are not subsequently generated. We conclude that adult learning processes and innovation based on social learning are more effective and sustainable; however, the farmers internalization in innovation processes is given longer term.