9 resultados para Social Information Processing Theory

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a previously reported logic cell structure (see SPIE, vol. 2038, p. 67-77, 1993), the two types of cells present at the inner and ganglion cell layers of the vertebrate retina and their intracellular response, as well as their connections with each other, have been simulated. These cells are amacrines and ganglion cells. The main scheme of the authors' configuration is shown in a figure. These two types of cells, as well as some of their possible interconnections, have been implemented with the authors' previously reported optical-processing element. As it has been shown, the authors' logic structure is able to process two optical input binary signals, being the output two logical functions. Moreover, if a delayed feedback from one of the two possible outputs to one or both of the inputs is introduced, a very different behaviour is obtained. Depending on the value of the time delay, an oscillatory output can be obtained from a constant optical input signal. Period and length pulses are dependent on delay values, both external and internal, as well as on other control signals. Moreover, a chaotic behaviour can be obtained too under certain conditions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to establish an active internal know-how -reserve~ in an information processing and engineering services . company, a training architecture tailored to the company as an whole must be defined. When a company' s earnings come from . advisory services dynamically structured i.n the form of projects, as is the case at hand, difficulties arise that must be taken into account in the architectural design. The first difficulties are of a psychological nature and the design method proposed here begjns wi th the definition of the highest training metasystem, which is aimed at making adjustments for the variety of perceptions of the company's human components, before the architecture can be designed. This approach may be considered as an application of the cybernetic Law of Requisita Variety (Ashby) and of the Principle of Conceptual Integrity (Brooks) . Also included is a description of sorne of the results of the first steps of metasystems at the level of company organization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Once admitted the advantages of object-based classification compared to pixel-based classification; the need of simple and affordable methods to define and characterize objects to be classified, appears. This paper presents a new methodology for the identification and characterization of objects at different scales, through the integration of spectral information provided by the multispectral image, and textural information from the corresponding panchromatic image. In this way, it has defined a set of objects that yields a simplified representation of the information contained in the two source images. These objects can be characterized by different attributes that allow discriminating between different spectral&textural patterns. This methodology facilitates information processing, from a conceptual and computational point of view. Thus the vectors of attributes defined can be used directly as training pattern input for certain classifiers, as for example artificial neural networks. Growing Cell Structures have been used to classify the merged information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In fact, much of the attraction of network theory initially stemmed from the fact that many networks seem to exhibit some sort of universality, as most of them belong to one of three classes: random, scale-free and small-world networks. Structural properties have been shown to translate into different important properties of a given system, including efficiency, speed of information processing, vulnerability to various forms of stress, and robustness. For example, scale-free and random topologies were shown to be...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La gestión del conocimiento (KM) se basa en la captación, filtración, procesamiento y análisis de unos datos en bruto que con dicho refinamiento podrán llegar a convertirse en conocimiento o Sabiduría. Estas prácticas tendrán lugar en este PFC en una WSN (Wireless Sensor Network) compuesta de unos sofisticados dispositivos comúnmente conocidos como “motas” y cuya principal característica son sus bajas capacidades en cuanto a memoria, batería o autonomía. Ha sido objetivo primordial de este Proyecto de fin de Carrera aunar una WSN con la Gestión del Conocimiento así como demostrar que es posible llevar a cabo grandes procesamientos de información, con tan bajas capacidades, si se distribuyen correctamente los procesos. En primera instancia, se introducen conceptos básicos acerca de las WSN (Wireless Sensor Networks) así como de los elementos principales en dichas redes. Tras conocer el modelo de arquitectura de comunicaciones se procede a presentar la Gestión del Conocimiento de forma teórica y a continuación la interpretación que se ha hecho a partir de diversas referencias bibliográficas para llevar a cabo la implementación del proyecto. El siguiente paso es describir punto por punto todos los componentes del Simulador; librerías, funcionamiento y demás cuestiones sobre configuración y puesta a punto. Como escenario de aplicación se plantea una red de sensores inalámbricos básica cuya topología y ubicación es completamente configurable. Se lleva a cabo una configuración a nivel de red basada en el protocolo 6LowPAN pero con posibilidad de simplificarlo. Los datos se procesan de acuerdo a un modelo piramidal de Gestión de Conocimiento adaptable a las necesidades del usuario. Mediante la utilización de las diversas opciones que proporciona la interfaz gráfica implementada y los documentos de resultados que se van generando, se puede llevar a cabo un detallado estudio posterior de la simulación y comprobar si se cumplen las expectativas planteadas. Knowledge management (KM) is based on the collection, filtering, processing and analysis of some raw data which such refinement it can be turned into knowledge or wisdom. These practices will take place in a WSN (Wireless Sensor Network) consists of sophisticated devices commonly known as "dots" and whose main characteristics are its low capacity for memory, battery or autonomy. A primary objective of this Project will be to join a WSN with Knowledge Management and show that it is possible make largo information processing, with such low capacity if the processes are properly distributed. First, we introduce basic concepts about the WSN (Wireless Sensor Networks) and major elements of these networks. After meeting the communications architecture model, we proceed to show the Knowledge Management theory and then the interpretation of several bibliographic references to carry out the project implementation. The next step is discovering point by point all over the Simulator components; libraries, operation and the rest of points about configuration and tuning. As application scenario we propose a basic wireless sensor network whose topology and location is completely customizable. It will perform a network level configuration based in W6LowPAN Protocol. Data is processed according to a pyramidal pattern Knowledge Management adaptable to the user´s needs. The hardware elements will suffer more or less energy dependence depending on their role and activity in the network. Through the various options that provide the graphical interface has been implemented and results documents that are generated, can be carried out after a detailed study of the simulation and verify compliance with the expectations raised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este proyecto de fin de carrera tiene como objetivo obtener una visión detallada de los sistemas y tecnologías de grabación y reproducción utilizadas para aplicaciones de audio 3D y entornos de realidad virtual, analizando las diferentes alternativas existentes, su funcionamiento, características, detalles técnicos y sus ámbitos de aplicación. Como punto de partida se estudiará la teoría psicoacústica y la localización de fuentes sonoras en el espacio, base para el estudio de los sistemas de audio 3D. Se estudiará tanto la espacialización sonora en un espacio real y la espacialización virtual (simulación mediante procesado de información de la localización de fuentes sonoras), en los que intervienen algunos fenómenos acústicos y psicoacústicos como ITD, o diferencia de tiempo que existe entre una señal acústica que llega a los pabellones auditivos, la ILD, o diferencia de intensidad o amplitud que hay entre la señal que llega a los pabellones auditivos y la localización espacial mediante otra serie de mecanismos biaurales. Tras una visión general de la teoría psicoacústica y la espacialización sonora, se analizarán con detalle los elementos de grabación y reproducción existentes para audio 3D. Concretamente, a lo largo del proyecto se profundizará en el funcionamiento del sistema estéreo, caracterizado por el posicionamiento sonoro mediante la utilización de dos canales; del sistema biaural, caracterizado por reconstruir campos sonoros mediante el uso de las HRTF; de los sistemas multicanal, detallando gran parte de las alternativas y configuraciones existentes; del sistema Ambiophonics, caracterizado por implementar filtros de cruce; del sistema Ambisonics, y sus diferentes formatos y técnicas de codificación y decodificación; y del sistema Wavefield Synthesis, caracterizado por recrear ambientes sonoros en grandes espacios. ABSTRACT This project aims to get a detailed view of recording and reproducing systems and technologies used to 3D audio applications and virtual reality environments, analyzing the different alternatives available, their functioning, features, technical details and their different scopes of applications. As a starting point, will be studied the psychoacoustic theory and the localization of sound sources in space, basis for the 3D audio study. Will be studied both the spacialization of sound sources in real space as virtual spatialization of sound sources (simulation by information processing of localization of sound sources), in which involves some acoustic and psychoacoustic phenomena like ITD (or the Interaural time difference), the ILD, (or the Interaural Level Difference) and spatial localization by another set of binaural mechanisms. After a general overview of the psychoacoustics theory and the sound spatialization, will be analyzed in detail existing methods of recording and reproducing for 3D audio. Specifically, during the project will analyze the characteristics of the stereo systems, characterized by sound positioning using two channels; the binaural systems, characterized by reconstructing sound fields by using the HRTF; the multichannel systems, detailing many of the existing alternatives and configurations; the Ambiophonics system, which is characterized by implementing crosstalk elimination techniques; the Ambiosonics system, and its various formats and encoding and decoding techniques; and the Wavefield Synthesis system, characterized by recreate soundscapes in large spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La investigación para el conocimiento del cerebro es una ciencia joven, su inicio se remonta a Santiago Ramón y Cajal en 1888. Desde esta fecha a nuestro tiempo la neurociencia ha avanzado mucho en el desarrollo de técnicas que permiten su estudio. Desde la neurociencia cognitiva hoy se explican muchos modelos que nos permiten acercar a nuestro entendimiento a capacidades cognitivas complejas. Aun así hablamos de una ciencia casi en pañales que tiene un lago recorrido por delante. Una de las claves del éxito en los estudios de la función cerebral ha sido convertirse en una disciplina que combina conocimientos de diversas áreas: de la física, de las matemáticas, de la estadística y de la psicología. Esta es la razón por la que a lo largo de este trabajo se entremezclan conceptos de diferentes campos con el objetivo de avanzar en el conocimiento de un tema tan complejo como el que nos ocupa: el entendimiento de la mente humana. Concretamente, esta tesis ha estado dirigida a la integración multimodal de la magnetoencefalografía (MEG) y la resonancia magnética ponderada en difusión (dMRI). Estas técnicas son sensibles, respectivamente, a los campos magnéticos emitidos por las corrientes neuronales, y a la microestructura de la materia blanca cerebral. A lo largo de este trabajo hemos visto que la combinación de estas técnicas permiten descubrir sinergias estructurofuncionales en el procesamiento de la información en el cerebro sano y en el curso de patologías neurológicas. Más específicamente en este trabajo se ha estudiado la relación entre la conectividad funcional y estructural y en cómo fusionarlas. Para ello, se ha cuantificado la conectividad funcional mediante el estudio de la sincronización de fase o la correlación de amplitudes entre series temporales, de esta forma se ha conseguido un índice que mide la similitud entre grupos neuronales o regiones cerebrales. Adicionalmente, la cuantificación de la conectividad estructural a partir de imágenes de resonancia magnética ponderadas en difusión, ha permitido hallar índices de la integridad de materia blanca o de la fuerza de las conexiones estructurales entre regiones. Estas medidas fueron combinadas en los capítulos 3, 4 y 5 de este trabajo siguiendo tres aproximaciones que iban desde el nivel más bajo al más alto de integración. Finalmente se utilizó la información fusionada de MEG y dMRI para la caracterización de grupos de sujetos con deterioro cognitivo leve, la detección de esta patología resulta relevante en la identificación precoz de la enfermedad de Alzheimer. Esta tesis está dividida en seis capítulos. En el capítulos 1 se establece un contexto para la introducción de la connectómica dentro de los campos de la neuroimagen y la neurociencia. Posteriormente en este capítulo se describen los objetivos de la tesis, y los objetivos específicos de cada una de las publicaciones científicas que resultaron de este trabajo. En el capítulo 2 se describen los métodos para cada técnica que fue empleada: conectividad estructural, conectividad funcional en resting state, redes cerebrales complejas y teoría de grafos y finalmente se describe la condición de deterioro cognitivo leve y el estado actual en la búsqueda de nuevos biomarcadores diagnósticos. En los capítulos 3, 4 y 5 se han incluido los artículos científicos que fueron producidos a lo largo de esta tesis. Estos han sido incluidos en el formato de la revista en que fueron publicados, estando divididos en introducción, materiales y métodos, resultados y discusión. Todos los métodos que fueron empleados en los artículos están descritos en el capítulo 2 de la tesis. Finalmente, en el capítulo 6 se concluyen los resultados generales de la tesis y se discuten de forma específica los resultados de cada artículo. ABSTRACT In this thesis I apply concepts from mathematics, physics and statistics to the neurosciences. This field benefits from the collaborative work of multidisciplinary teams where physicians, psychologists, engineers and other specialists fight for a common well: the understanding of the brain. Research on this field is still in its early years, being its birth attributed to the neuronal theory of Santiago Ramo´n y Cajal in 1888. In more than one hundred years only a very little percentage of the brain functioning has been discovered, and still much more needs to be explored. Isolated techniques aim at unraveling the system that supports our cognition, nevertheless in order to provide solid evidence in such a field multimodal techniques have arisen, with them we will be able to improve current knowledge about human cognition. Here we focus on the multimodal integration of magnetoencephalography (MEG) and diffusion weighted magnetic resonance imaging. These techniques are sensitive to the magnetic fields emitted by the neuronal currents and to the white matter microstructure, respectively. The combination of such techniques could bring up evidences about structural-functional synergies in the brain information processing and which part of this synergy fails in specific neurological pathologies. In particular, we are interested in the relationship between functional and structural connectivity, and how two integrate this information. We quantify the functional connectivity by studying the phase synchronization or the amplitude correlation between time series obtained by MEG, and so we get an index indicating similarity between neuronal entities, i.e. brain regions. In addition we quantify structural connectivity by performing diffusion tensor estimation from the diffusion weighted images, thus obtaining an indicator of the integrity of the white matter or, if preferred, the strength of the structural connections between regions. These quantifications are then combined following three different approaches, from the lowest to the highest level of integration, in chapters 3, 4 and 5. We finally apply the fused information to the characterization or prediction of mild cognitive impairment, a clinical entity which is considered as an early step in the continuum pathological process of dementia. The dissertation is divided in six chapters. In chapter 1 I introduce connectomics within the fields of neuroimaging and neuroscience. Later in this chapter we describe the objectives of this thesis, and the specific objectives of each of the scientific publications that were produced as result of this work. In chapter 2 I describe the methods for each of the techniques that were employed, namely structural connectivity, resting state functional connectivity, complex brain networks and graph theory, and finally, I describe the clinical condition of mild cognitive impairment and the current state of the art in the search for early biomarkers. In chapters 3, 4 and 5 I have included the scientific publications that were generated along this work. They have been included in in their original format and they contain introduction, materials and methods, results and discussion. All methods that were employed in these papers have been described in chapter 2. Finally, in chapter 6 I summarize all the results from this thesis, both locally for each of the scientific publications and globally for the whole work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracting opinions and emotions from text is becoming increasingly important, especially since the advent of micro-blogging and social networking. Opinion mining is particularly popular and now gathers many public services, datasets and lexical resources. Unfortunately, there are few available lexical and semantic resources for emotion recognition that could foster the development of new emotion aware services and applications. The diversity of theories of emotion and the absence of a common vocabulary are two of the main barriers to the development of such resources. This situation motivated the creation of Onyx, a semantic vocabulary of emotions with a focus on lexical resources and emotion analysis services. It follows a linguistic Linked Data approach, it is aligned with the Provenance Ontology, and it has been integrated with the Lexicon Model for Ontologies (lemon), a popular RDF model for representing lexical entries. This approach also means a new and interesting way to work with different theories of emotion. As part of this work, Onyx has been aligned with EmotionML and WordNet-Affect.