5 resultados para Smeekens, John P.
em Universidad Politécnica de Madrid
Resumo:
Information generated by abstract interpreters has long been used to perform program specialization. Additionally, if the abstract interpreter generates a multivariant analysis, it is also possible to perform múltiple specialization. Information about valúes of variables is propagated by simulating program execution and performing fixpoint computations for recursive calis. In contrast, traditional partial evaluators (mainly) use unfolding for both propagating valúes of variables and transforming the program. It is known that abstract interpretation is a better technique for propagating success valúes than unfolding. However, the program transformations induced by unfolding may lead to important optimizations which are not directly achievable in the existing frameworks for múltiple specialization based on abstract interpretation. The aim of this work is to devise a specialization framework which integrates the better information propagation of abstract interpretation with the powerful program transformations performed by partial evaluation, and which can be implemented via small modifications to existing generic abstract interpreters. With this aim, we will relate top-down abstract interpretation with traditional concepts in partial evaluation and sketch how the sophisticated techniques developed for controlling partial evaluation can be adapted to the proposed specialization framework. We conclude that there can be both practical and conceptual advantages in the proposed integration of partial evaluation and abstract interpretation.
Resumo:
Abstract is not available
Resumo:
In this paper we present a revisited classification of term variation in the light of the Linked Data initiative. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web with the idea of transforming it into a global graph. One of the crucial steps of this initiative is the linking step, in which datasets in one or more languages need to be linked or connected with one another. We claim that the linking process would be facilitated if datasets are enriched with lexical and terminological information. Being that the final aim, we propose a classification of lexical, terminological and semantic variants that will become part of a model of linguistic descriptions that is currently being proposed within the framework of the W3C Ontology- Lexica Community Group to enrich ontologies and Linked Data vocabularies. Examples of modeling solutions of the different types of variants are also provided.
Resumo:
The application of Linked Data technology to the publication of linguistic data promises to facilitate interoperability of these data and has lead to the emergence of the so called Linguistic Linked Data Cloud (LLD) in which linguistic data is published following the Linked Data principles. Three essential issues need to be addressed for such data to be easily exploitable by language technologies: i) appropriate machine-readable licensing information is needed for each dataset, ii) minimum quality standards for Linguistic Linked Data need to be defined, and iii) appropriate vocabularies for publishing Linguistic Linked Data resources are needed. We propose the notion of Licensed Linguistic Linked Data (3LD) in which different licensing models might co-exist, from totally open to more restrictive licenses through to completely closed datasets.
Resumo:
Recently, experts and practitioners in language resources have started recognizing the benefits of the linked data (LD) paradigm for the representation and exploitation of linguistic data on the Web. The adoption of the LD principles is leading to an emerging ecosystem of multilingual open resources that conform to the Linguistic Linked Open Data Cloud, in which datasets of linguistic data are interconnected and represented following common vocabularies, which facilitates linguistic information discovery, integration and access. In order to contribute to this initiative, this paper summarizes several key aspects of the representation of linguistic information as linked data from a practical perspective. The main goal of this document is to provide the basic ideas and tools for migrating language resources (lexicons, corpora, etc.) as LD on the Web and to develop some useful NLP tasks with them (e.g., word sense disambiguation). Such material was the basis of a tutorial imparted at the EKAW’14 conference, which is also reported in the paper.