2 resultados para Small clusters

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Industrial applications of computer vision sometimes require detection of atypical objects that occur as small groups of pixels in digital images. These objects are difficult to single out because they are small and randomly distributed. In this work we propose an image segmentation method using the novel Ant System-based Clustering Algorithm (ASCA). ASCA models the foraging behaviour of ants, which move through the data space searching for high data-density regions, and leave pheromone trails on their path. The pheromone map is used to identify the exact number of clusters, and assign the pixels to these clusters using the pheromone gradient. We applied ASCA to detection of microcalcifications in digital mammograms and compared its performance with state-of-the-art clustering algorithms such as 1D Self-Organizing Map, k-Means, Fuzzy c-Means and Possibilistic Fuzzy c-Means. The main advantage of ASCA is that the number of clusters needs not to be known a priori. The experimental results show that ASCA is more efficient than the other algorithms in detecting small clusters of atypical data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyses how the internal resources of small- and medium-sized enterprises determine access (learning processes) to technology centres (TCs) or industrial research institutes (innovation infrastructure) in traditional low-tech clusters. These interactions basically represent traded (market-based) transactions, which constitute important sources of knowledge in clusters. The paper addresses the role of TCs in low-tech clusters, and uses semi-structured interviews with 80 firms in a manufacturing cluster. The results point out that producer–user interactions are the most frequent; thus, the higher the sector knowledge-intensive base, the more likely the utilization of the available research infrastructure becomes. Conversely, the sectors with less knowledge-intensive structures, i.e. less absorptive capacity (AC), present weak linkages to TCs, as they frequently prefer to interact with suppliers, who act as transceivers of knowledge. Therefore, not all the firms in a cluster can fully exploit the available research infrastructure, and their AC moderates this engagement. In addition, the existence of TCs is not sufficient since the active role of a firm's search strategies to undertake interactions and conduct openness to available sources of knowledge is also needed. The study has implications for policymakers and academia.