11 resultados para Slow moving vehicles.
em Universidad Politécnica de Madrid
Resumo:
This study presents a robust method for ground plane detection in vision-based systems with a non-stationary camera. The proposed method is based on the reliable estimation of the homography between ground planes in successive images. This homography is computed using a feature matching approach, which in contrast to classical approaches to on-board motion estimation does not require explicit ego-motion calculation. As opposed to it, a novel homography calculation method based on a linear estimation framework is presented. This framework provides predictions of the ground plane transformation matrix that are dynamically updated with new measurements. The method is specially suited for challenging environments, in particular traffic scenarios, in which the information is scarce and the homography computed from the images is usually inaccurate or erroneous. The proposed estimation framework is able to remove erroneous measurements and to correct those that are inaccurate, hence producing a reliable homography estimate at each instant. It is based on the evaluation of the difference between the predicted and the observed transformations, measured according to the spectral norm of the associated matrix of differences. Moreover, an example is provided on how to use the information extracted from ground plane estimation to achieve object detection and tracking. The method has been successfully demonstrated for the detection of moving vehicles in traffic environments.
Resumo:
The aim of this paper is to evaluate the performance of mobile WiMAX technology for users in a highly mobility scenario for an operating frequency of 3.5 GHz. By utilizing a modified version of the extended Erceg’s propagation model, based on the introduction of Rayleigh fading due to multipath, we have calculated the received desired power and the interference power to obtain the statistical signal-to-interference-plusnoise rate (as a function of mean value and variance of cochannel interference) and the user throughput. A rural scenario composed of a transmitting base station and users in moving vehicles along a cell sector is proposed. The obtained results about coverage and throughput have been simulated by a tool built in MATLAB
Resumo:
During the last years cities around the world have invested important quantities of money in measures for reducing congestion and car-trips. Investments which are nothing but potential solutions for the well-known urban sprawl phenomenon, also called the “development trap” that leads to further congestion and a higher proportion of our time spent in slow moving cars. Over the path of this searching for solutions, the complex relationship between urban environment and travel behaviour has been studied in a number of cases. The main question on discussion is, how to encourage multi-stop tours? Thus, the objective of this paper is to verify whether unobserved factors influence tour complexity. For this purpose, we use a data-base from a survey conducted in 2006-2007 in Madrid, a suitable case study for analyzing urban sprawl due to new urban developments and substantial changes in mobility patterns in the last years. A total of 943 individuals were interviewed from 3 selected neighbourhoods (CBD, urban and suburban). We study the effect of unobserved factors on trip frequency. This paper present the estimation of an hybrid model where the latent variable is called propensity to travel and the discrete choice model is composed by 5 alternatives of tour type. The results show that characteristics of the neighbourhoods in Madrid are important to explain trip frequency. The influence of land use variables on trip generation is clear and in particular the presence of commercial retails. Through estimation of elasticities and forecasting we determine to what extent land-use policy measures modify travel demand. Comparing aggregate elasticities with percentage variations, it can be seen that percentage variations could lead to inconsistent results. The result shows that hybrid models better explain travel behavior than traditional discrete choice models.
Resumo:
Because of the high number of crashes occurring on highways, it is necessary to intensify the search for new tools that help in understanding their causes. This research explores the use of a geographic information system (GIS) for an integrated analysis, taking into account two accident-related factors: design consistency (DC) (based on vehicle speed) and available sight distance (ASD) (based on visibility). Both factors require specific GIS software add-ins, which are explained. Digital terrain models (DTMs), vehicle paths, road centerlines, a speed prediction model, and crash data are integrated in the GIS. The usefulness of this approach has been assessed through a study of more than 500 crashes. From a regularly spaced grid, the terrain (bare ground) has been modeled through a triangulated irregular network (TIN). The length of the roads analyzed is greater than 100 km. Results have shown that DC and ASD could be related to crashes in approximately 4% of cases. In order to illustrate the potential of GIS, two crashes are fully analyzed: a car rollover after running off road on the right side and a rear-end collision of two moving vehicles. Although this procedure uses two software add-ins that are available only for ArcGIS, the study gives a practical demonstration of the suitability of GIS for conducting integrated studies of road safety.
Resumo:
This paper is a continuation of a previous one, Sanz-Andrés, Santiago-Prowald, Baker and Quinn (J. Wind Eng. Ind. Aerodyn. 91 (2003) 925) concerning the loads generated on a structural panel (traffic sign) by vehicle running along the road, although obviously, the results are also applicable to the effects of other moving vehicles such as trains. The structural panel was modelized as a large plate whose largest dimension is perpendicular to the vehicle motion direction. In this paper a similar approach is used to develop a mathematical model for the vehicle-induced load on pedestrian barriers, modelized as a large plate whose largest dimension is parallel to the vehicle motion direction. The purpose of the work is to develop a model simple enough to give analytical results, although with the physical phenomena correctly accounted for, such as to be able to explain, at least qualitatively, the main characteristics of the phenomenon, as observed in the experiments performed by Quinn et al. (J. Wind Eng. Ind. Aerodyn. 89 (2001) 831). Actually, in spite of the model simplicity, results of the theoretical model show a reasonable good quantitative agreement with the experimental results. The aim of this and previous publications is to provide to the transport infrastructure community with some simple tools that can help to explain, and in some cases also to compute, the unsteady loading produced by moving vehicles on persons and installations placed close to the roads or tracks.
Resumo:
The main object of this study is to contribute to the study of the train-induced force on pedestrians with a theoretical model based on unsteady potential flow. The same method can be applied to other bodies and other kind of moving vehicles. The outcome of this theoretical model is that the force coefficient (referred to the vehicle speed and the pedestrian cross-section diameter) acting on the pedestrian are proportional to a single parameter which involves the pedestrian cross-section diameter, the vehicle cross-section area and the distance between the pedestrian and the vehicle. The results of the present model concerning the change in modulus and orientation experienced by the pedestrian, as the vehicles pass by, has a similar appearance to that considered in the European standards. The results obtained are mainly qualitative because of the simplifying assumptions needed to obtain a simple formulation leading to analytical results, except in the case of a vehicle with streamlined front shapes, where quantitative results can be expected.
Resumo:
La escritura es una actividad psicomotora muy importante en el desarrollo infantil. Tanto es así que su correcto aprendizaje condicionará el futuro de una persona, pues estará presente en todo tipo de situaciones cotidianas. La disgrafía es el término utilizado para referirse a los problemas relacionados con la escritura, y se manifiesta cuando la escritura de un determinado sujeto es ilegible o lenta como resultado de un aprendizaje fallido de los procesos motores de la escritura. Estos problemas intentan resolverse durante el desarrollo infantil mediante diferentes pruebas que miden las capacidades visomotoras de los niños basándose en criterios de forma (número y posición correcta de trazos). Sin embargo, a lo largo de los años estos criterios han demostrado no ser totalmente precisos en la detección prematura de posibles casos de disgrafía. Por ello, en este proyecto se ha desarrollado una aplicación que ayuda a ampliar la fiabilidad de los test actuales, utilizando un criterio cinemático. Esta aplicación, desarrollada para una tableta Android, muestra al niño una serie de figuras que él debe copiar en la tableta haciendo uso de un lápiz óptico. Los trazos registrados por la aplicación son analizados para valorar aspectos como la fluidez, continuidad y regularidad, ampliando así la fiabilidad de los test actuales, lo que permite desechar falsos positivos y detectar irregularidades que antes no podían ser detectadas. La aplicación desarrollada ha sido validada con un total de ocho niños de cuatro años y siete meses de media de edad, confirmando que cumple con las expectativas planteadas. ABSTRACT. Writing is a very important psychomotor activity in child development because it will be present in all kinds of everyday situations; therefore its proper learning will determine the future of the individual. Dysgraphia is the term used to refer to the problems related to writing, and it takes place when a particular person’s writing is unreadable or slow-moving as a result of a failed learning of writing motor processes. These problems are usually detected by different tests that measure children’s visual motor abilities based on shape criteria (correct number and position of strikes). However, over the years these criteria haven’t proved to be completely accurate in the early detection of possible cases of dysgraphia. Therefore, in this project is presented an application that extends the reliability of current test, using a kinematic approach. This application, developed for an Android tablet, displays a series of figures that the child must copy to the tablet by using a stylus. Strokes recorded by the application are then analyzed to assess aspects such as fluidity, continuity and regularity, expanding the reliability of the current test, discarding false positives created by the conventional criteria and detecting irregularities that previously could not be detected. The developed application has been validated with a total of eight children about four years and seven months in average age, confirming that the application fulfills the initial expectations.
Resumo:
This article presents a novel system and a control strategy for visual following of a 3D moving object by an Unmanned Aerial Vehicle UAV. The presented strategy is based only on the visual information given by an adaptive tracking method based on the color information, which jointly with the dynamics of a camera fixed to a rotary wind UAV are used to develop an Image-based visual servoing IBVS system. This system is focused on continuously following a 3D moving target object, maintaining it with a fixed distance and centered on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation
Resumo:
Governments are working in new policies to slow down total energy consumption and greenhouse gases (GHG) emissions, promoting the deployment of electric vehicles (EVs) in all countries. In order to facilitate this deployment and help to reduce the final costs of their batteries, additional utilization of EVs when those are parked has been proposed. EVs can be used to minimize the total electricity cost of buildings (named vehicle to building applications, V2B). In this paper an economic evaluation of EVs in the Building Energy Management System is shown. The optimal storage capacity and its equivalent number of EVs are determined. This value is then used for determining the optimal charging schedule to be applied to the batteries. From this schedule, the total expected profit is derived for the case of a real hotel in Spain.
Resumo:
In this paper we consider a system of three parabolic equations modeling the behavior of two biological species moving attracted by a chemical factor. The chemical substance verifies a parabolic equation with slow diffusion. The system contains second order terms in the first two equations modeling the chemotactic effects. We apply an iterative method to obtain the global existence of solutions using that the total mass of the biological species is conserved. The stability of the homogeneous steady states is studied by using an energy method. A final example is presented to illustrate the theoretical results.
Resumo:
In this paper, we consider the problem of autonomous navigation of multirotor platforms in GPS-denied environments. The focus of this work is on safe navigation based on unperfect odometry measurements, such as on-board optical flow measurements. The multirotor platform is modeled as a flying object with specific kinematic constraints that must be taken into account in order to obtain successful results. A navigation controller is proposed featuring a set of configurable parameters that allow, for instance, to have a configuration setup for fast trajectory following, and another to soften the control laws and make the vehicle navigation more precise and slow whenever necessary. The proposed controller has been successfully implemented in two different multirotor platforms with similar sensoring capabilities showing the openness and tolerance of the approach. This research is focused around the Computer Vision Group's objective of applying multirotor vehicles to civilian service applications. The presented work was implemented to compete in the International Micro Air Vehicle Conference and Flight Competition IMAV 2012, gaining two awards: the Special Award on "Best Automatic Performance - IMAV 2012" and the second overall prize in the participating category "Indoor Flight Dynamics - Rotary Wing MAV". Most of the code related to the present work is available as two open-source projects hosted in GitHub.