2 resultados para Situated Displays

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tiled projector displays are a common choice for training simulators, where a high resolution output image is required. They are cheap for the resolution that they can reach and can be configured in many different ways. Nevertheless, such kinds of displays require geometric and color correction so that the composite image looks seamless. Display correction is an even bigger challenge when the projected images include dark scenes combined with brighter scenes. This is usually a problem for railway simulators when the train is positioned inside a tunnel and the black offset effect becomes noticeable. In this paper, a method for fast photometric and geometric correction of tiled display systems where dark and bright scenes are combined is presented. The image correction is carried out in two steps. First, geometric alignment and overlapping areas attenuation for brighter scenes is applied. Second, in the event of being inside a tunnel, the brightness of the scene is increased in certain areas using light sources in order to create the impression of darkness but minimizing the effect of the black offset

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important part of human intelligence, both historically and operationally, is our ability to communicate. We learn how to communicate, and maintain our communicative skills, in a society of communicators – a highly effective way to reach and maintain proficiency in this complex skill. Principles that might allow artificial agents to learn language this way are in completely known at present – the multi-dimensional nature of socio-communicative skills are beyond every machine learning framework so far proposed. Our work begins to address the challenge of proposing a way for observation-based machine learning of natural language and communication. Our framework can learn complex communicative skills with minimal up-front knowledge. The system learns by incrementally producing predictive models of causal relationships in observed data, guided by goal-inference and reasoning using forward-inverse models. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime TV-style interview, using multimodal communicative gesture and situated language to talk about recycling of various materials and objects. S1 can learn multimodal complex language and multimodal communicative acts, a vocabulary of 100 words forming natural sentences with relatively complex sentence structure, including manual deictic reference and anaphora. S1 is seeded only with high-level information about goals of the interviewer and interviewee, and a small ontology; no grammar or other information is provided to S1 a priori. The agent learns the pragmatics, semantics, and syntax of complex utterances spoken and gestures from scratch, by observing the humans compare and contrast the cost and pollution related to recycling aluminum cans, glass bottles, newspaper, plastic, and wood. After 20 hours of observation S1 can perform an unscripted TV interview with a human, in the same style, without making mistakes.