3 resultados para Sistema endocrino
em Universidad Politécnica de Madrid
Resumo:
La diabetes mellitus es un trastorno del metabolismo de los carbohidratos producido por la insuficiente o nula producción de insulina o la reducida sensibilidad a esta hormona. Es una enfermedad crónica con una mayor prevalencia en los países desarrollados debido principalmente a la obesidad, la vida sedentaria y disfunciones en el sistema endocrino relacionado con el páncreas. La diabetes Tipo 1 es una enfermedad autoinmune en la que son destruidas las células beta del páncreas, que producen la insulina, y es necesaria la administración de insulina exógena. Un enfermo de diabetes Tipo 1 debe seguir una terapia con insulina administrada por la vía subcutánea que debe estar adaptada a sus necesidades metabólicas y a sus hábitos de vida, esta terapia intenta imitar el perfil insulínico de un páncreas no patológico. La tecnología actual permite abordar el desarrollo del denominado “páncreas endocrino artificial”, que aportaría precisión, eficacia y seguridad para los pacientes, en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. Permitiría que el paciente no estuviera tan pendiente de su enfermedad. El páncreas artificial consta de un sensor continuo de glucosa, una bomba de infusión de insulina y un algoritmo de control, que calcula la insulina a infusionar usando la glucosa como información principal. Este trabajo presenta un método de control en lazo semi-cerrado mediante un sistema borroso experto basado en reglas. La regulación borrosa se fundamenta en la ambigüedad del lenguaje del ser humano. Esta incertidumbre sirve para la formación de una serie de reglas que representan el pensamiento humano, pero a la vez es el sistema que controla un proceso, en este caso el sistema glucorregulatorio. Este proyecto está enfocado en el diseño de un controlador borroso que haciendo uso de variables como la glucosa, insulina y dieta, sea capaz de restaurar la función endocrina del páncreas de forma tecnológica. La validación del algoritmo se ha realizado principalmente mediante experimentos en simulación utilizando una población de pacientes sintéticos, evaluando los resultados con estadísticos de primer orden y algunos más específicos como el índice de riesgo de Kovatchev, para después comparar estos resultados con los obtenidos por otros métodos de control anteriores. Los resultados demuestran que el control borroso (FBPC) mejora el control glucémico con respecto a un sistema predictivo experto basado en reglas booleanas (pBRES). El FBPC consigue reducir siempre la glucosa máxima y aumentar la mínima respecto del pBRES pero es en terapias desajustadas, donde el FBPC es especialmente robusto, hace descender la glucosa máxima 8,64 mg/dl, el uso de insulina es 3,92 UI menor, aumenta la glucosa mínima 3,32 mg/dl y lleva al rango de glucosa 80 – 110 mg/dl 15,33 muestras más. Por lo tanto se puede concluir que el FBPC realiza un mejor control glucémico que el controlador pBRES haciéndole especialmente efectivo, robusto y seguro en condiciones de desajustes de terapia basal y con gran capacidad de mejora futura. SUMMARY The diabetes mellitus is a metabolic disorder caused by a poor or null insulin secretion or a reduced sensibility to insulin. Diabetes is a chronic disease with a higher prevalence in the industrialized countries, mainly due to obesity, the sedentary life and endocrine disfunctions connected with the pancreas. Type 1 diabetes is a self-immune disease where the beta cells of the pancreas, which are the responsible of secreting insulin, are damaged. Hence, it is necessary an exogenous delivery of insulin. The Type 1 diabetic patient has to follow a therapy with subcutaneous insulin administration which should be adjusted to his/her metabolic needs and life style. This therapy tries to mimic the insulin profile of a non-pathological pancreas. Current technology lets the development of the so-called endocrine artificial pancreas that would provide accuracy, efficiency and safety to patients, in regards to the glycemic control normalization and reduction of the risk of hypoglycemic. In addition, it would help the patient not to be so concerned about his disease. The artificial pancreas has a continuous glucose sensor, an insulin infusion pump and a control algorithm, that calculates the insulin infusion using the glucose as main information. This project presents a method of control in semi-closed-loop, through an expert fuzzy system based on rules. The fuzzy regulation is based on the human language ambiguity. This uncertainty serves for construction of some rules that represent the human language besides it is the system that controls a process, in this case the glucoregulatory system. This project is focus on the design of a fuzzy controller that, using variables like glucose insulin and diet, will be able to restore the pancreas endocrine function with technology. The algorithm assessment has mainly been done through experiments in simulation using a population of synthetic patients, evaluating the results with first order statistical parameters and some other more specific such as the Kovatchev risk index, to compare later these results with the ones obtained in others previous methods of control. The results demonstrate that the fuzzy control (FBPC) improves the glycemic control connected with a predictive expert system based on Booleans rules (pBRES). The FBPC is always able to reduce the maximum level of glucose and increase the minimum level as compared with pBRES but it is in unadjusted therapies where FBPC is especially strong, it manages to decrease the maximum level of glucose and insulin used by 8,64 mg/dl and 3,92 UI respectively, also increases the value of minimum glucose by 3,32 mg/dl, getting 15,33 samples more inside the 80-110 mg/dl glucose rank. Therefore we can conclude that FBPC achieves a better glycemic control than the controller pBRES doing it especially effective, robust and safe in conditions of mismatch basal therapy and with a great capacity for future improvements.
Resumo:
En las vacas lecheras el exceso de calor provoca cuantiosas pérdidas económicas debido a sus consecuencias sobre la producción y la reproducción, derivadas de los efectos negativos que tiene en el metabolismo digestivo, el sistema inmune, el sistema endocrino y el propio comportamiento de estos animales. Por tanto, es imprescindible adoptar medidas de diversa naturaleza tanto para reducir la producción de calor de las vacas como para incrementar su tasa de eliminación de calor.
Resumo:
La Diabetes mellitus es una enfermedad caracterizada por la insuficiente o nula producción de insulina por parte del páncreas o la reducida sensibilidad del organismo a esta hormona, que ayuda a que la glucosa llegue a los tejidos y al sistema nervioso para suministrar energía. La Diabetes tiene una mayor prevalencia en los países desarrollados debido a múltiples factores, entre ellos la obesidad, la vida sedentaria, y disfunciones en el sistema endocrino relacionadas con el páncreas. La Diabetes Tipo 1 es una enfermedad crónica e incurable, en la que son destruidas las células beta del páncreas, que producen la insulina, haciéndose necesaria la administración de insulina de forma exógena para controlar los niveles de glucosa en sangre. El paciente debe seguir una terapia con insulina administrada por vía subcutánea, que debe estar adaptada a sus necesidades metabólicas y a sus hábitos de vida. Esta terapia intenta imitar el perfil insulínico de un páncreas sano. La tecnología actual permite abordar el desarrollo del denominado “páncreas endocrino artificial” (PEA), que aportaría precisión, eficacia y seguridad en la aplicación de las terapias con insulina y permitiría una mayor independencia de los pacientes frente a su enfermedad, que en la actualidad están sujetos a una constante toma de decisiones. El PEA consta de un sensor continuo de glucosa, una bomba de infusión de insulina y un algoritmo de control, que calcula la insulina a infusionar utilizando los niveles de glucosa del paciente como información principal. Este trabajo presenta una modificación en el método de control en lazo cerrado propuesto en un proyecto previo. El controlador del que se parte está compuesto por un controlador basal booleano y un controlador borroso postprandial basado en reglas borrosas heredadas del controlador basal. El controlador postprandial administra el 50% del bolo manual (calculado a partir de la cantidad de carbohidratos que el paciente va a consumir) en el instante del aviso de la ingesta y reparte el resto en instantes posteriores. El objetivo es conseguir una regulación óptima del nivel de glucosa en el periodo postprandial. Con el objetivo de reducir las hiperglucemias que se producen en el periodo postprandial se realiza un transporte de insulina, que es un adelanto de la insulina basal del periodo postprandial que se suministrará junto con un porcentaje variable del bolo manual. Este porcentaje estará relacionado con el estado metabólico del paciente previo a la ingesta. Además se modificará la base de conocimiento para adecuar el comportamiento del controlador al periodo postprandial. Este proyecto está enfocado en la mejora del controlador borroso postprandial previo, modificando dos aspectos: la inferencia del controlador postprandial y añadiendo una toma de decisiones automática sobre el % del bolo manual y el transporte. Se ha propuesto un controlador borroso con una nueva inferencia, que no hereda las características del controlado basal, y ha sido adaptado al periodo postprandial. Se ha añadido una inferencia borrosa que modifica la cantidad de insulina a administrar en el momento del aviso de ingesta y la cantidad de insulina basal a transportar del periodo postprandial al bolo manual. La validación del algoritmo se ha realizado mediante experimentos en simulación utilizando una población de diez pacientes sintéticos pertenecientes al Simulador de Padua/Virginia, evaluando los resultados con estadísticos para después compararlos con los obtenidos con el método de control anterior. Tras la evaluación de los resultados se puede concluir que el nuevo controlador postprandial, acompañado de la toma de decisiones automática, realiza un mejor control glucémico en el periodo postprandial, disminuyendo los niveles de las hiperglucemias. ABSTRACT. Diabetes mellitus is a disease characterized by the insufficient or null production of insulin from the pancreas or by a reduced sensitivity to this hormone, which helps glucose get to the tissues and the nervous system to provide energy. Diabetes has more prevalence in developed countries due to multiple factors, including obesity, sedentary lifestyle and endocrine dysfunctions related to the pancreas. Type 1 Diabetes is a chronic, incurable disease in which beta cells in the pancreas that produce insulin are destroyed, and exogenous insulin delivery is required to control blood glucose levels. The patient must follow a therapy with insulin administered by the subcutaneous route that should be adjusted to the metabolic needs and lifestyle of the patient. This therapy tries to imitate the insulin profile of a non-pathological pancreas. Current technology can adress the development of the so-called “endocrine artificial pancreas” (EAP) that would provide accuracy, efficacy and safety in the application of insulin therapies and will allow patients a higher level of independence from their disease. Patients are currently tied to constant decision making. The EAP consists of a continuous glucose sensor, an insulin infusion pump and a control algorithm that computes the insulin amount that has to be infused using the glucose as the main source of information. This work shows modifications to the control method in closed loop proposed in a previous project. The reference controller is composed by a boolean basal controller and a postprandial rule-based fuzzy controller which inherits the rules from the basal controller. The postprandial controller administrates 50% of the bolus (calculated from the amount of carbohydrates that the patient is going to ingest) in the moment of the intake warning, and distributes the remaining in later instants. The goal is to achieve an optimum regulation of the glucose level in the postprandial period. In order to reduce hyperglycemia in the postprandial period an insulin transport is carried out. It consists on a feedforward of the basal insulin from the postprandial period, which will be administered with a variable percentage of the manual bolus. This percentage would be linked with the metabolic state of the patient in moments previous to the intake. Furthermore, the knowledge base is going to be modified in order to fit the controller performance to the postprandial period. This project is focused on the improvement of the previous controller, modifying two aspects: the postprandial controller inference, and the automatic decision making on the percentage of the manual bolus and the transport. A fuzzy controller with a new inference has been proposed and has been adapted to the postprandial period. A fuzzy inference has been added, which modifies both the amount of manual bolus to administrate at the intake warning and the amount of basal insulin to transport to the prandial bolus. The algorithm assessment has been done through simulation experiments using a synthetic population of 10 patients in the UVA/PADOVA simulator, evaluating the results with statistical parameters for further comparison with those obtained with the previous control method. After comparing results it can be concluded that the new postprandial controller, combined with the automatic decision making, carries out a better glycemic control in the postprandial period, decreasing levels of hyperglycemia.