8 resultados para Singularly perturbed problem
em Universidad Politécnica de Madrid
Resumo:
Bead models are used in dynamical simulation of tethers. These models discretize a cable using beads distributed along its length. The time evolution is obtained nu- merically. Typically the number of particles ranges between 5 and 50, depending on the required accuracy. Sometimes the simulation is extended over long periods (several years). The complex interactions between the cable and its spatial environment require to optimize the propagators —both in runtime and precisión that constitute the central core of the process. The special perturbation method treated on this article conjugates simpleness of computer implementation, speediness and precision, and is capable to propagate the orbit of whichever material particle. The paper describes the evolution of some orbital elements, which are constants in a non-perturbed problem, but which evolve in the time scale imposed by the perturbation. It can be used with any kind of orbit and it is free of sin- gularities related to small inclination and/or small eccentricity. The use of Euler parameters makes it robust.
Resumo:
In this Comment we explain the discrepancies mentioned by the authors between their results and ours about the in?uence of the gravitational quadrupole moment in the perturbative calculation of corrections to the precession of the periastron of quasielliptical Keplerian equatorial orbits around a point mass. The discrepancy appears to be a consequence of two different calculations of the angular momentum of the orbits.
Resumo:
A formulation of the perturbed two-body problem that relies on a new set of orbital elements is presented. The proposed method represents a generalization of the special perturbation method published by Peláez et al. (Celest Mech Dyn Astron 97(2):131?150,2007) for the case of a perturbing force that is partially or totally derivable from a potential. We accomplish this result by employing a generalized Sundman time transformation in the framework of the projective decomposition, which is a known approach for transforming the two-body problem into a set of linear and regular differential equations of motion. Numerical tests, carried out with examples extensively used in the literature, show the remarkable improvement of the performance of the new method for different kinds of perturbations and eccentricities. In particular, one notable result is that the quadratic dependence of the position error on the time-like argument exhibited by Peláez?s method for near-circular motion under the J2 perturbation is transformed into linear.Moreover, themethod reveals to be competitive with two very popular elementmethods derived from theKustaanheimo-Stiefel and Sperling-Burdet regularizations.
Resumo:
EDROMO is a special perturbation method for the propagation of elliptical orbits in the perturbed two-body problem. The state vector consists of a time-element and seven spatial elements, and the independent variable is a generalized eccentric anomaly introduced through a Sundman time transformation. The key role in the derivation of the method is played by an intermediate reference frame which enjoys the property of remaining fixed in space as long as perturbations are absent. Three elements of EDROMO characterize the dynamics in the orbital frame and its orientation with respect to the intermediate frame, and the Euler parameters associated to the intermediate frame represent the other four spatial elements. The performance of EDromo has been analyzed by considering some typical problems in astrodynamics. In almost all our tests the method is the best among other popular formulations based on elements.
Resumo:
An analytical solution of the two body problem perturbed by a constant tangential acceleration is derived with the aid of perturbation theory. The solution, which is valid for circular and elliptic orbits with generic eccentricity, describes the instantaneous time variation of all orbital elements. A comparison with high-accuracy numerical results shows that the analytical method can be effectively applied to multiple-revolution low-thrust orbit transfer around planets and in interplanetary space with negligible error.
Resumo:
Abstract?We consider a mathematical model related to the stationary regime of a plasma of fusion nuclear, magnetically confined in a Stellarator device. Using the geometric properties of the fusion device, a suitable system of coordinates and averaging methods, the mathematical problem may be reduced to a two dimensional free boundary problem of nonlocal type, where the corresponding differential equation is of the Grad?Shafranov type. The current balance within each flux magnetic gives us the possibility to define the third covariant magnetic field component with respect to the averaged poloidal flux function. We present here some numerical experiences and we give some numerical approach for the averaged poloidal flux and for the third covariant magnetic field component.
Resumo:
In this paper, an analytical solution of the main problem, a satellite only perturbed by the J2 harmonic, is derived with the aid of perturbation theory and by using DROMO variables. The solution, which is valid for circular and elliptic orbits with generic eccentricity and inclination, describes the instantaneous time variation of all orbital elements, that is, the actual values of the osculating elements
Resumo:
In this article, an approximate analytical solution for the two body problem perturbed by a radial, low acceleration is obtained, using a regularized formulation of the orbital motion and the method of multiple scales. The results reveal that the physics of the problem evolve in two fundamental scales of the true anomaly. The first one drives the oscillations of the orbital parameters along each orbit. The second one is responsible of the long-term variations in the amplitude and mean values of these oscillations. A good agreement is found with high precision numerical solutions.