7 resultados para Simulation experiments
em Universidad Politécnica de Madrid
Resumo:
La presente Tesis constituye un avance en el conocimiento de los efectos de la variabilidad climática en los cultivos en la Península Ibérica (PI). Es bien conocido que la temperatura del océano, particularmente de la región tropical, es una de las variables más convenientes para ser utilizado como predictor climático. Los océanos son considerados como la principal fuente de almacenamiento de calor del planeta debido a la alta capacidad calorífica del agua. Cuando se libera esta energía, altera los regímenes globales de circulación atmosférica por mecanismos de teleconexión. Estos cambios en la circulación general de la atmósfera afectan a la temperatura, precipitación, humedad, viento, etc., a escala regional, los cuales afectan al crecimiento, desarrollo y rendimiento de los cultivos. Para el caso de Europa, esto implica que la variabilidad atmosférica en una región específica se asocia con la variabilidad de otras regiones adyacentes y/o remotas, como consecuencia Europa está siendo afectada por los patrones de circulaciones globales, que a su vez, se ven afectados por patrones oceánicos. El objetivo general de esta tesis es analizar la variabilidad del rendimiento de los cultivos y su relación con la variabilidad climática y teleconexiones, así como evaluar su predictibilidad. Además, esta Tesis tiene como objetivo establecer una metodología para estudiar la predictibilidad de las anomalías del rendimiento de los cultivos. El análisis se centra en trigo y maíz como referencia para otros cultivos de la PI, cultivos de invierno en secano y cultivos de verano en regadío respectivamente. Experimentos de simulación de cultivos utilizando una metodología en cadena de modelos (clima + cultivos) son diseñados para evaluar los impactos de los patrones de variabilidad climática en el rendimiento y su predictibilidad. La presente Tesis se estructura en dos partes: La primera se centra en el análisis de la variabilidad del clima y la segunda es una aplicación de predicción cuantitativa de cosechas. La primera parte está dividida en 3 capítulos y la segundo en un capitulo cubriendo los objetivos específicos del presente trabajo de investigación. Parte I. Análisis de variabilidad climática El primer capítulo muestra un análisis de la variabilidad del rendimiento potencial en una localidad como indicador bioclimático de las teleconexiones de El Niño con Europa, mostrando su importancia en la mejora de predictibilidad tanto en clima como en agricultura. Además, se presenta la metodología elegida para relacionar el rendimiento con las variables atmosféricas y oceánicas. El rendimiento de los cultivos es parcialmente determinado por la variabilidad climática atmosférica, que a su vez depende de los cambios en la temperatura de la superficie del mar (TSM). El Niño es el principal modo de variabilidad interanual de la TSM, y sus efectos se extienden en todo el mundo. Sin embargo, la predictibilidad de estos impactos es controversial, especialmente aquellos asociados con la variabilidad climática Europea, que se ha encontrado que es no estacionaria y no lineal. Este estudio mostró cómo el rendimiento potencial de los cultivos obtenidos a partir de datos de reanálisis y modelos de cultivos sirve como un índice alternativo y más eficaz de las teleconexiones de El Niño, ya que integra las no linealidades entre las variables climáticas en una única serie temporal. Las relaciones entre El Niño y las anomalías de rendimiento de los cultivos son más significativas que las contribuciones individuales de cada una de las variables atmosféricas utilizadas como entrada en el modelo de cultivo. Además, la no estacionariedad entre El Niño y la variabilidad climática europea se detectan con mayor claridad cuando se analiza la variabilidad de los rendimiento de los cultivos. La comprensión de esta relación permite una cierta predictibilidad hasta un año antes de la cosecha del cultivo. Esta predictibilidad no es constante, sino que depende tanto la modulación de la alta y baja frecuencia. En el segundo capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de verano en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de maíz en la PI para todo el siglo veinte, usando un modelo de cultivo calibrado en 5 localidades españolas y datos climáticos de reanálisis para obtener series temporales largas de rendimiento potencial. Este estudio evalúa el uso de datos de reanálisis para obtener series de rendimiento de cultivos que dependen solo del clima, y utilizar estos rendimientos para analizar la influencia de los patrones oceánicos y atmosféricos. Los resultados muestran una gran fiabilidad de los datos de reanálisis. La distribución espacial asociada a la primera componente principal de la variabilidad del rendimiento muestra un comportamiento similar en todos los lugares estudiados de la PI. Se observa una alta correlación lineal entre el índice de El Niño y el rendimiento, pero no es estacionaria en el tiempo. Sin embargo, la relación entre la temperatura del aire y el rendimiento se mantiene constante a lo largo del tiempo, siendo los meses de mayor influencia durante el período de llenado del grano. En cuanto a los patrones atmosféricos, el patrón Escandinavia presentó una influencia significativa en el rendimiento en PI. En el tercer capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de invierno en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de trigo en secano del Noreste (NE) de la PI. La variabilidad climática es el principal motor de los cambios en el crecimiento, desarrollo y rendimiento de los cultivos, especialmente en los sistemas de producción en secano. En la PI, los rendimientos de trigo son fuertemente dependientes de la cantidad de precipitación estacional y la distribución temporal de las mismas durante el periodo de crecimiento del cultivo. La principal fuente de variabilidad interanual de la precipitación en la PI es la Oscilación del Atlántico Norte (NAO), que se ha relacionado, en parte, con los cambios en la temperatura de la superficie del mar en el Pacífico Tropical (El Niño) y el Atlántico Tropical (TNA). La existencia de cierta predictibilidad nos ha animado a analizar la posible predicción de los rendimientos de trigo en la PI utilizando anomalías de TSM como predictor. Para ello, se ha utilizado un modelo de cultivo (calibrado en dos localidades del NE de la PI) y datos climáticos de reanálisis para obtener series temporales largas de rendimiento de trigo alcanzable y relacionar su variabilidad con anomalías de la TSM. Los resultados muestran que El Niño y la TNA influyen en el desarrollo y rendimiento del trigo en el NE de la PI, y estos impactos depende del estado concurrente de la NAO. Aunque la relación cultivo-TSM no es igual durante todo el periodo analizado, se puede explicar por un mecanismo eco-fisiológico estacionario. Durante la segunda mitad del siglo veinte, el calentamiento (enfriamiento) en la superficie del Atlántico tropical se asocia a una fase negativa (positiva) de la NAO, que ejerce una influencia positiva (negativa) en la temperatura mínima y precipitación durante el invierno y, por lo tanto, aumenta (disminuye) el rendimiento de trigo en la PI. En relación con El Niño, la correlación más alta se observó en el período 1981 -2001. En estas décadas, los altos (bajos) rendimientos se asocian con una transición El Niño - La Niña (La Niña - El Niño) o con eventos de El Niño (La Niña) que están finalizando. Para estos eventos, el patrón atmosférica asociada se asemeja a la NAO, que también influye directamente en la temperatura máxima y precipitación experimentadas por el cultivo durante la floración y llenado de grano. Los co- efectos de los dos patrones de teleconexión oceánicos ayudan a aumentar (disminuir) la precipitación y a disminuir (aumentar) la temperatura máxima en PI, por lo tanto el rendimiento de trigo aumenta (disminuye). Parte II. Predicción de cultivos. En el último capítulo se analiza los beneficios potenciales del uso de predicciones climáticas estacionales (por ejemplo de precipitación) en las predicciones de rendimientos de trigo y maíz, y explora métodos para aplicar dichos pronósticos climáticos en modelos de cultivo. Las predicciones climáticas estacionales tienen un gran potencial en las predicciones de cultivos, contribuyendo de esta manera a una mayor eficiencia de la gestión agrícola, seguridad alimentaria y de subsistencia. Los pronósticos climáticos se expresan en diferentes formas, sin embargo todos ellos son probabilísticos. Para ello, se evalúan y aplican dos métodos para desagregar las predicciones climáticas estacionales en datos diarios: 1) un generador climático estocástico condicionado (predictWTD) y 2) un simple re-muestreador basado en las probabilidades del pronóstico (FResampler1). Los dos métodos se evaluaron en un caso de estudio en el que se analizaron los impactos de tres escenarios de predicciones de precipitación estacional (predicción seco, medio y lluvioso) en el rendimiento de trigo en secano, sobre las necesidades de riego y rendimiento de maíz en la PI. Además, se estimó el margen bruto y los riesgos de la producción asociada con las predicciones de precipitación estacional extremas (seca y lluviosa). Los métodos predWTD y FResampler1 usados para desagregar los pronósticos de precipitación estacional en datos diarios, que serán usados como inputs en los modelos de cultivos, proporcionan una predicción comparable. Por lo tanto, ambos métodos parecen opciones factibles/viables para la vinculación de los pronósticos estacionales con modelos de simulación de cultivos para establecer predicciones de rendimiento o las necesidades de riego en el caso de maíz. El análisis del impacto en el margen bruto de los precios del grano de los dos cultivos (trigo y maíz) y el coste de riego (maíz) sugieren que la combinación de los precios de mercado previstos y la predicción climática estacional pueden ser una buena herramienta en la toma de decisiones de los agricultores, especialmente en predicciones secas y/o localidades con baja precipitación anual. Estos métodos permiten cuantificar los beneficios y riesgos de los agricultores ante una predicción climática estacional en la PI. Por lo tanto, seríamos capaces de establecer sistemas de alerta temprana y diseñar estrategias de adaptación del manejo del cultivo para aprovechar las condiciones favorables o reducir los efectos de condiciones adversas. La utilidad potencial de esta Tesis es la aplicación de las relaciones encontradas para predicción de cosechas de la próxima campaña agrícola. Una correcta predicción de los rendimientos podría ayudar a los agricultores a planear con antelación sus prácticas agronómicas y todos los demás aspectos relacionados con el manejo de los cultivos. Esta metodología se puede utilizar también para la predicción de las tendencias futuras de la variabilidad del rendimiento en la PI. Tanto los sectores públicos (mejora de la planificación agrícola) como privados (agricultores, compañías de seguros agrarios) pueden beneficiarse de esta mejora en la predicción de cosechas. ABSTRACT The present thesis constitutes a step forward in advancing of knowledge of the effects of climate variability on crops in the Iberian Peninsula (IP). It is well known that ocean temperature, particularly the tropical ocean, is one of the most convenient variables to be used as climate predictor. Oceans are considered as the principal heat storage of the planet due to the high heat capacity of water. When this energy is released, it alters the global atmospheric circulation regimes by teleconnection1 mechanisms. These changes in the general circulation of the atmosphere affect the regional temperature, precipitation, moisture, wind, etc., and those influence crop growth, development and yield. For the case of Europe, this implies that the atmospheric variability in a specific region is associated with the variability of others adjacent and/or remote regions as a consequence of Europe being affected by global circulations patterns which, in turn, are affected by oceanic patterns. The general objective of this Thesis is to analyze the variability of crop yields at climate time scales and its relation to the climate variability and teleconnections, as well as to evaluate their predictability. Moreover, this Thesis aims to establish a methodology to study the predictability of crop yield anomalies. The analysis focuses on wheat and maize as a reference crops for other field crops in the IP, for winter rainfed crops and summer irrigated crops respectively. Crop simulation experiments using a model chain methodology (climate + crop) are designed to evaluate the impacts of climate variability patterns on yield and its predictability. The present Thesis is structured in two parts. The first part is focused on the climate variability analyses, and the second part is an application of the quantitative crop forecasting for years that fulfill specific conditions identified in the first part. This Thesis is divided into 4 chapters, covering the specific objectives of the present research work. Part I. Climate variability analyses The first chapter shows an analysis of potential yield variability in one location, as a bioclimatic indicator of the El Niño teleconnections with Europe, putting forward its importance for improving predictability in both climate and agriculture. It also presents the chosen methodology to relate yield with atmospheric and oceanic variables. Crop yield is partially determined by atmospheric climate variability, which in turn depends on changes in the sea surface temperature (SST). El Niño is the leading mode of SST interannual variability, and its impacts extend worldwide. Nevertheless, the predictability of these impacts is controversial, especially those associated with European climate variability, which have been found to be non-stationary and non-linear. The study showed how potential2 crop yield obtained from reanalysis data and crop models serves as an alternative and more effective index of El Niño teleconnections because it integrates the nonlinearities between the climate variables in a unique time series. The relationships between El Niño and crop yield anomalies are more significant than the individual contributions of each of the atmospheric variables used as input in the crop model. Additionally, the non-stationarities between El Niño and European climate variability are more clearly detected when analyzing crop-yield variability. The understanding of this relationship allows for some predictability up to one year before the crop is harvested. This predictability is not constant, but depends on both high and low frequency modulation. The second chapter identifies the oceanic and atmospheric patterns of climate variability affecting summer cropping systems in the IP. Moreover, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of simulated crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The third chapter identifies the oceanic and atmospheric patterns of climate variability affecting winter cropping systems in the IP. Also, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of rainfed wheat yield variability in IP. Climate variability is the main driver of changes in crop growth, development and yield, especially for rainfed production systems. In IP, wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. The major source of precipitation interannual variability in IP is the North Atlantic Oscillation (NAO) which has been related in part with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) sea surface temperature (SST). The existence of some predictability has encouraged us to analyze the possible predictability of the wheat yield in the IP using SSTs anomalies as predictor. For this purpose, a crop model with a site specific calibration for the Northeast of IP and reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that El Niño and TNA influence rainfed wheat development and yield in IP and these impacts depend on the concurrent state of the NAO. Although crop-SST relationships do not equally hold on during the whole analyzed period, they can be explained by an understood and stationary ecophysiological mechanism. During the second half of the twenty century, the positive (negative) TNA index is associated to a negative (positive) phase of NAO, which exerts a positive (negative) influence on minimum temperatures (Tmin) and precipitation (Prec) during winter and, thus, yield increases (decreases) in IP. In relation to El Niño, the highest correlation takes place in the period 1981-2001. For these decades, high (low) yields are associated with an El Niño to La Niña (La Niña to El Niño) transitions or to El Niño events finishing. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures (Tmax) and precipitation experienced by the crop during flowering and grain filling. The co-effects of the two teleconnection patterns help to increase (decrease) the rainfall and decrease (increase) Tmax in IP, thus on increase (decrease) wheat yield. Part II. Crop forecasting The last chapter analyses the potential benefits for wheat and maize yields prediction from using seasonal climate forecasts (precipitation), and explores methods to apply such a climate forecast to crop models. Seasonal climate prediction has significant potential to contribute to the efficiency of agricultural management, and to food and livelihood security. Climate forecasts come in different forms, but probabilistic. For this purpose, two methods were evaluated and applied for disaggregating seasonal climate forecast into daily weather realizations: 1) a conditioned stochastic weather generator (predictWTD) and 2) a simple forecast probability resampler (FResampler1). The two methods were evaluated in a case study where the impacts of three scenarios of seasonal rainfall forecasts on rainfed wheat yield, on irrigation requirements and yields of maize in IP were analyzed. In addition, we estimated the economic margins and production risks associated with extreme scenarios of seasonal rainfall forecasts (dry and wet). The predWTD and FResampler1 methods used for disaggregating seasonal rainfall forecast into daily data needed by the crop simulation models provided comparable predictability. Therefore both methods seem feasible options for linking seasonal forecasts with crop simulation models for establishing yield forecasts or irrigation water requirements. The analysis of the impact on gross margin of grain prices for both crops and maize irrigation costs suggests the combination of market prices expected and the seasonal climate forecast can be a good tool in farmer’s decision-making, especially on dry forecast and/or in locations with low annual precipitation. These methodologies would allow quantifying the benefits and risks of a seasonal weather forecast to farmers in IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. The potential usefulness of this Thesis is to apply the relationships found to crop forecasting on the next cropping season, suggesting opportunity time windows for the prediction. The methodology can be used as well for the prediction of future trends of IP yield variability. Both public (improvement of agricultural planning) and private (decision support to farmers, insurance companies) sectors may benefit from such an improvement of crop forecasting.
Resumo:
La Diabetes mellitus es una enfermedad caracterizada por la insuficiente o nula producción de insulina por parte del páncreas o la reducida sensibilidad del organismo a esta hormona, que ayuda a que la glucosa llegue a los tejidos y al sistema nervioso para suministrar energía. La Diabetes tiene una mayor prevalencia en los países desarrollados debido a múltiples factores, entre ellos la obesidad, la vida sedentaria, y disfunciones en el sistema endocrino relacionadas con el páncreas. La Diabetes Tipo 1 es una enfermedad crónica e incurable, en la que son destruidas las células beta del páncreas, que producen la insulina, haciéndose necesaria la administración de insulina de forma exógena para controlar los niveles de glucosa en sangre. El paciente debe seguir una terapia con insulina administrada por vía subcutánea, que debe estar adaptada a sus necesidades metabólicas y a sus hábitos de vida. Esta terapia intenta imitar el perfil insulínico de un páncreas sano. La tecnología actual permite abordar el desarrollo del denominado “páncreas endocrino artificial” (PEA), que aportaría precisión, eficacia y seguridad en la aplicación de las terapias con insulina y permitiría una mayor independencia de los pacientes frente a su enfermedad, que en la actualidad están sujetos a una constante toma de decisiones. El PEA consta de un sensor continuo de glucosa, una bomba de infusión de insulina y un algoritmo de control, que calcula la insulina a infusionar utilizando los niveles de glucosa del paciente como información principal. Este trabajo presenta una modificación en el método de control en lazo cerrado propuesto en un proyecto previo. El controlador del que se parte está compuesto por un controlador basal booleano y un controlador borroso postprandial basado en reglas borrosas heredadas del controlador basal. El controlador postprandial administra el 50% del bolo manual (calculado a partir de la cantidad de carbohidratos que el paciente va a consumir) en el instante del aviso de la ingesta y reparte el resto en instantes posteriores. El objetivo es conseguir una regulación óptima del nivel de glucosa en el periodo postprandial. Con el objetivo de reducir las hiperglucemias que se producen en el periodo postprandial se realiza un transporte de insulina, que es un adelanto de la insulina basal del periodo postprandial que se suministrará junto con un porcentaje variable del bolo manual. Este porcentaje estará relacionado con el estado metabólico del paciente previo a la ingesta. Además se modificará la base de conocimiento para adecuar el comportamiento del controlador al periodo postprandial. Este proyecto está enfocado en la mejora del controlador borroso postprandial previo, modificando dos aspectos: la inferencia del controlador postprandial y añadiendo una toma de decisiones automática sobre el % del bolo manual y el transporte. Se ha propuesto un controlador borroso con una nueva inferencia, que no hereda las características del controlado basal, y ha sido adaptado al periodo postprandial. Se ha añadido una inferencia borrosa que modifica la cantidad de insulina a administrar en el momento del aviso de ingesta y la cantidad de insulina basal a transportar del periodo postprandial al bolo manual. La validación del algoritmo se ha realizado mediante experimentos en simulación utilizando una población de diez pacientes sintéticos pertenecientes al Simulador de Padua/Virginia, evaluando los resultados con estadísticos para después compararlos con los obtenidos con el método de control anterior. Tras la evaluación de los resultados se puede concluir que el nuevo controlador postprandial, acompañado de la toma de decisiones automática, realiza un mejor control glucémico en el periodo postprandial, disminuyendo los niveles de las hiperglucemias. ABSTRACT. Diabetes mellitus is a disease characterized by the insufficient or null production of insulin from the pancreas or by a reduced sensitivity to this hormone, which helps glucose get to the tissues and the nervous system to provide energy. Diabetes has more prevalence in developed countries due to multiple factors, including obesity, sedentary lifestyle and endocrine dysfunctions related to the pancreas. Type 1 Diabetes is a chronic, incurable disease in which beta cells in the pancreas that produce insulin are destroyed, and exogenous insulin delivery is required to control blood glucose levels. The patient must follow a therapy with insulin administered by the subcutaneous route that should be adjusted to the metabolic needs and lifestyle of the patient. This therapy tries to imitate the insulin profile of a non-pathological pancreas. Current technology can adress the development of the so-called “endocrine artificial pancreas” (EAP) that would provide accuracy, efficacy and safety in the application of insulin therapies and will allow patients a higher level of independence from their disease. Patients are currently tied to constant decision making. The EAP consists of a continuous glucose sensor, an insulin infusion pump and a control algorithm that computes the insulin amount that has to be infused using the glucose as the main source of information. This work shows modifications to the control method in closed loop proposed in a previous project. The reference controller is composed by a boolean basal controller and a postprandial rule-based fuzzy controller which inherits the rules from the basal controller. The postprandial controller administrates 50% of the bolus (calculated from the amount of carbohydrates that the patient is going to ingest) in the moment of the intake warning, and distributes the remaining in later instants. The goal is to achieve an optimum regulation of the glucose level in the postprandial period. In order to reduce hyperglycemia in the postprandial period an insulin transport is carried out. It consists on a feedforward of the basal insulin from the postprandial period, which will be administered with a variable percentage of the manual bolus. This percentage would be linked with the metabolic state of the patient in moments previous to the intake. Furthermore, the knowledge base is going to be modified in order to fit the controller performance to the postprandial period. This project is focused on the improvement of the previous controller, modifying two aspects: the postprandial controller inference, and the automatic decision making on the percentage of the manual bolus and the transport. A fuzzy controller with a new inference has been proposed and has been adapted to the postprandial period. A fuzzy inference has been added, which modifies both the amount of manual bolus to administrate at the intake warning and the amount of basal insulin to transport to the prandial bolus. The algorithm assessment has been done through simulation experiments using a synthetic population of 10 patients in the UVA/PADOVA simulator, evaluating the results with statistical parameters for further comparison with those obtained with the previous control method. After comparing results it can be concluded that the new postprandial controller, combined with the automatic decision making, carries out a better glycemic control in the postprandial period, decreasing levels of hyperglycemia.
Resumo:
All meta-analyses should include a heterogeneity analysis. Even so, it is not easy to decide whether a set of studies are homogeneous or heterogeneous because of the low statistical power of the statistics used (usually the Q test). Objective: Determine a set of rules enabling SE researchers to find out, based on the characteristics of the experiments to be aggregated, whether or not it is feasible to accurately detect heterogeneity. Method: Evaluate the statistical power of heterogeneity detection methods using a Monte Carlo simulation process. Results: The Q test is not powerful when the meta-analysis contains up to a total of about 200 experimental subjects and the effect size difference is less than 1. Conclusions: The Q test cannot be used as a decision-making criterion for meta-analysis in small sample settings like SE. Random effects models should be used instead of fixed effects models. Caution should be exercised when applying Q test-mediated decomposition into subgroups.
Resumo:
Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion-generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation.
Resumo:
The primary hypothesis stated by this paper is that the use of social choice theory in Ambient Intelligence systems can improve significantly users satisfaction when accessing shared resources. A research methodology based on agent based social simulations is employed to support this hypothesis and to evaluate these benefits. The result is a six-fold contribution summarized as follows. Firstly, several considerable differences between this application case and the most prominent social choice application, political elections, have been found and described. Secondly, given these differences, a number of metrics to evaluate different voting systems in this scope have been proposed and formalized. Thirdly, given the presented application and the metrics proposed, the performance of a number of well known electoral systems is compared. Fourthly, as a result of the performance study, a novel voting algorithm capable of obtaining the best balance between the metrics reviewed is introduced. Fifthly, to improve the social welfare in the experiments, the voting methods are combined with cluster analysis techniques. Finally, the article is complemented by a free and open-source tool, VoteSim, which ensures not only the reproducibility of the experimental results presented, but also allows the interested reader to adapt the case study presented to different environments.
Resumo:
El agotamiento, la ausencia o, simplemente, la incertidumbre sobre la cantidad de las reservas de combustibles fósiles se añaden a la variabilidad de los precios y a la creciente inestabilidad en la cadena de aprovisionamiento para crear fuertes incentivos para el desarrollo de fuentes y vectores energéticos alternativos. El atractivo de hidrógeno como vector energético es muy alto en un contexto que abarca, además, fuertes inquietudes por parte de la población sobre la contaminación y las emisiones de gases de efecto invernadero. Debido a su excelente impacto ambiental, la aceptación pública del nuevo vector energético dependería, a priori, del control de los riesgos asociados su manipulación y almacenamiento. Entre estos, la existencia de un innegable riesgo de explosión aparece como el principal inconveniente de este combustible alternativo. Esta tesis investiga la modelización numérica de explosiones en grandes volúmenes, centrándose en la simulación de la combustión turbulenta en grandes dominios de cálculo en los que la resolución que es alcanzable está fuertemente limitada. En la introducción, se aborda una descripción general de los procesos de explosión. Se concluye que las restricciones en la resolución de los cálculos hacen necesario el modelado de los procesos de turbulencia y de combustión. Posteriormente, se realiza una revisión crítica de las metodologías disponibles tanto para turbulencia como para combustión, que se lleva a cabo señalando las fortalezas, deficiencias e idoneidad de cada una de las metodologías. Como conclusión de esta investigación, se obtiene que la única estrategia viable para el modelado de la combustión, teniendo en cuenta las limitaciones existentes, es la utilización de una expresión que describa la velocidad de combustión turbulenta en función de distintos parámetros. Este tipo de modelos se denominan Modelos de velocidad de llama turbulenta y permiten cerrar una ecuación de balance para la variable de progreso de combustión. Como conclusión también se ha obtenido, que la solución más adecuada para la simulación de la turbulencia es la utilización de diferentes metodologías para la simulación de la turbulencia, LES o RANS, en función de la geometría y de las restricciones en la resolución de cada problema particular. Sobre la base de estos hallazgos, el crea de un modelo de combustión en el marco de los modelos de velocidad de la llama turbulenta. La metodología propuesta es capaz de superar las deficiencias existentes en los modelos disponibles para aquellos problemas en los que se precisa realizar cálculos con una resolución moderada o baja. Particularmente, el modelo utiliza un algoritmo heurístico para impedir el crecimiento del espesor de la llama, una deficiencia que lastraba el célebre modelo de Zimont. Bajo este enfoque, el énfasis del análisis se centra en la determinación de la velocidad de combustión, tanto laminar como turbulenta. La velocidad de combustión laminar se determina a través de una nueva formulación capaz de tener en cuenta la influencia simultánea en la velocidad de combustión laminar de la relación de equivalencia, la temperatura, la presión y la dilución con vapor de agua. La formulación obtenida es válida para un dominio de temperaturas, presiones y dilución con vapor de agua más extenso de cualquiera de las formulaciones previamente disponibles. Por otra parte, el cálculo de la velocidad de combustión turbulenta puede ser abordado mediante el uso de correlaciones que permiten el la determinación de esta magnitud en función de distintos parámetros. Con el objetivo de seleccionar la formulación más adecuada, se ha realizado una comparación entre los resultados obtenidos con diversas expresiones y los resultados obtenidos en los experimentos. Se concluye que la ecuación debida a Schmidt es la más adecuada teniendo en cuenta las condiciones del estudio. A continuación, se analiza la importancia de las inestabilidades de la llama en la propagación de los frentes de combustión. Su relevancia resulta significativa para mezclas pobres en combustible en las que la intensidad de la turbulencia permanece moderada. Estas condiciones son importantes dado que son habituales en los accidentes que ocurren en las centrales nucleares. Por ello, se lleva a cabo la creación de un modelo que permita estimar el efecto de las inestabilidades, y en concreto de la inestabilidad acústica-paramétrica, en la velocidad de propagación de llama. El modelado incluye la derivación matemática de la formulación heurística de Bauwebs et al. para el cálculo de la incremento de la velocidad de combustión debido a las inestabilidades de la llama, así como el análisis de la estabilidad de las llamas con respecto a una perturbación cíclica. Por último, los resultados se combinan para concluir el modelado de la inestabilidad acústica-paramétrica. Tras finalizar esta fase, la investigación se centro en la aplicación del modelo desarrollado en varios problemas de importancia para la seguridad industrial y el posterior análisis de los resultados y la comparación de los mismos con los datos experimentales correspondientes. Concretamente, se abordo la simulación de explosiones en túneles y en contenedores, con y sin gradiente de concentración y ventilación. Como resultados generales, se logra validar el modelo confirmando su idoneidad para estos problemas. Como última tarea, se ha realizado un analisis en profundidad de la catástrofe de Fukushima-Daiichi. El objetivo del análisis es determinar la cantidad de hidrógeno que explotó en el reactor número uno, en contraste con los otros estudios sobre el tema que se han centrado en la determinación de la cantidad de hidrógeno generado durante el accidente. Como resultado de la investigación, se determinó que la cantidad más probable de hidrogeno que fue consumida durante la explosión fue de 130 kg. Es un hecho notable el que la combustión de una relativamente pequeña cantidad de hidrogeno pueda causar un daño tan significativo. Esta es una muestra de la importancia de este tipo de investigaciones. Las ramas de la industria para las que el modelo desarrollado será de interés abarca la totalidad de la futura economía de hidrógeno (pilas de combustible, vehículos, almacenamiento energético, etc) con un impacto especial en los sectores del transporte y la energía nuclear, tanto para las tecnologías de fisión y fusión. ABSTRACT The exhaustion, absolute absence or simply the uncertainty on the amount of the reserves of fossil fuels sources added to the variability of their prices and the increasing instability and difficulties on the supply chain are strong incentives for the development of alternative energy sources and carriers. The attractiveness of hydrogen in a context that additionally comprehends concerns on pollution and emissions is very high. Due to its excellent environmental impact, the public acceptance of the new energetic vector will depend on the risk associated to its handling and storage. Fromthese, the danger of a severe explosion appears as the major drawback of this alternative fuel. This thesis investigates the numerical modeling of large scale explosions, focusing on the simulation of turbulent combustion in large domains where the resolution achievable is forcefully limited. In the introduction, a general description of explosion process is undertaken. It is concluded that the restrictions of resolution makes necessary the modeling of the turbulence and combustion processes. Subsequently, a critical review of the available methodologies for both turbulence and combustion is carried out pointing out their strengths and deficiencies. As a conclusion of this investigation, it appears clear that the only viable methodology for combustion modeling is the utilization of an expression for the turbulent burning velocity to close a balance equation for the combustion progress variable, a model of the Turbulent flame velocity kind. Also, that depending on the particular resolution restriction of each problem and on its geometry the utilization of different simulation methodologies, LES or RANS, is the most adequate solution for modeling the turbulence. Based on these findings, the candidate undertakes the creation of a combustion model in the framework of turbulent flame speed methodology which is able to overcome the deficiencies of the available ones for low resolution problems. Particularly, the model utilizes a heuristic algorithm to maintain the thickness of the flame brush under control, a serious deficiency of the Zimont model. Under the approach utilized by the candidate, the emphasis of the analysis lays on the accurate determination of the burning velocity, both laminar and turbulent. On one side, the laminar burning velocity is determined through a newly developed correlation which is able to describe the simultaneous influence of the equivalence ratio, temperature, steam dilution and pressure on the laminar burning velocity. The formulation obtained is valid for a larger domain of temperature, steam dilution and pressure than any of the previously available formulations. On the other side, a certain number of turbulent burning velocity correlations are available in the literature. For the selection of the most suitable, they have been compared with experiments and ranked, with the outcome that the formulation due to Schmidt was the most adequate for the conditions studied. Subsequently, the role of the flame instabilities on the development of explosions is assessed. Their significance appears to be of importance for lean mixtures in which the turbulence intensity remains moderate. These are important conditions which are typical for accidents on Nuclear Power Plants. Therefore, the creation of a model to account for the instabilities, and concretely, the acoustic parametric instability is undertaken. This encloses the mathematical derivation of the heuristic formulation of Bauwebs et al. for the calculation of the burning velocity enhancement due to flame instabilities as well as the analysis of the stability of flames with respect to a cyclic velocity perturbation. The results are combined to build a model of the acoustic-parametric instability. The following task in this research has been to apply the model developed to several problems significant for the industrial safety and the subsequent analysis of the results and comparison with the corresponding experimental data was performed. As a part of such task simulations of explosions in a tunnel and explosions in large containers, with and without gradient of concentration and venting have been carried out. As a general outcome, the validation of the model is achieved, confirming its suitability for the problems addressed. As a last and final undertaking, a thorough study of the Fukushima-Daiichi catastrophe has been carried out. The analysis performed aims at the determination of the amount of hydrogen participating on the explosion that happened in the reactor one, in contrast with other analysis centered on the amount of hydrogen generated during the accident. As an outcome of the research, it was determined that the most probable amount of hydrogen exploding during the catastrophe was 130 kg. It is remarkable that the combustion of such a small quantity of material can cause tremendous damage. This is an indication of the importance of these types of investigations. The industrial branches that can benefit from the applications of the model developed in this thesis include the whole future hydrogen economy, as well as nuclear safety both in fusion and fission technology.
Resumo:
El propósito de esta tesis es estudiar la aproximación a los fenómenos de transporte térmico en edificación acristalada a través de sus réplicas a escala. La tarea central de esta tesis es, por lo tanto, la comparación del comportamiento térmico de modelos a escala con el correspondiente comportamiento térmico del prototipo a escala real. Los datos principales de comparación entre modelo y prototipo serán las temperaturas. En el primer capítulo del Estado del Arte de esta tesis se hará un recorrido histórico por los usos de los modelos a escala desde la antigüedad hasta nuestro días. Dentro de éste, en el Estado de la Técnica, se expondrán los beneficios que tiene su empleo y las dificultades que conllevan. A continuación, en el Estado de la Investigación de los modelos a escala, se analizarán artículos científicos y tesis. Precisamente, nos centraremos en aquellos modelos a escala que son funcionales. Los modelos a escala funcionales son modelos a escala que replican, además, una o algunas de las funciones de sus prototipos. Los modelos a escala pueden estar distorsionados o no. Los modelos a escala distorsionados son aquellos con cambios intencionados en las dimensiones o en las características constructivas para la obtención de una respuesta específica por ejemplo, replicar el comportamiento térmico. Los modelos a escala sin distorsión, o no distorsionados, son aquellos que mantienen, en la medida de lo posible, las proporciones dimensionales y características constructivas de sus prototipos de referencia. Estos modelos a escala funcionales y no distorsionados son especialmente útiles para los arquitectos ya que permiten a la vez ser empleados como elementos funcionales de análisis y como elementos de toma de decisiones en el diseño constructivo. A pesar de su versatilidad, en general, se observará que se han utilizado muy poco estos modelos a escala funcionales sin distorsión para el estudio del comportamiento térmico de la edificación. Posteriormente, se expondrán las teorías para el análisis de los datos térmicos recogidos de los modelos a escala y su aplicabilidad a los correspondientes prototipos a escala real. Se explicarán los experimentos llevados a cabo, tanto en laboratorio como a intemperie. Se han realizado experimentos con modelos sencillos cúbicos a diferentes escalas y sometidos a las mismas condiciones ambientales. De estos modelos sencillos hemos dado el salto a un modelo reducido de una edificación acristalada relativamente sencilla. Los experimentos consisten en ensayos simultáneos a intemperie del prototipo a escala real y su modelo reducido del Taller de Prototipos de la Escuela Técnica Superior de Arquitectura de Madrid (ETSAM). Para el análisis de los datos experimentales hemos aplicado las teorías conocidas, tanto comparaciones directas como el empleo del análisis dimensional. Finalmente, las simulaciones nos permiten comparaciones flexibles con los datos experimentales, por ese motivo, hemos utilizado tanto programas comerciales como un algoritmo de simulación desarrollado ad hoc para esta investigación. Finalmente, exponemos la discusión y las conclusiones de esta investigación. Abstract The purpose of this thesis is to study the approximation to phenomena of heat transfer in glazed buildings through their scale replicas. The central task of this thesis is, therefore, the comparison of the thermal performance of scale models without distortion with the corresponding thermal performance of their full-scale prototypes. Indoor air temperatures of the scale model and the corresponding prototype are the data to be compared. In the first chapter on the State of the Art, it will be shown a broad vision, consisting of a historic review of uses of scale models, from antiquity to our days. In the section State of the Technique, the benefits and difficulties associated with their implementation are presented. Additionally, in the section State of the Research, current scientific papers and theses on scale models are reviewed. Specifically, we focus on functional scale models. Functional scale models are scale models that replicate, additionally, one or some of the functions of their corresponding prototypes. Scale models can be distorted or not. Scale models with distortion are considered scale models with intentional changes, on one hand, in dimensions scaled unevenly and, on the other hand, in constructive characteristics or materials, in order to get a specific performance for instance, a specific thermal performance. Consequently, scale models without distortion, or undistorted scale models scaled evenly, are those replicating, to the extent possible, without distortion, the dimensional proportions and constructive configurations of their prototypes of reference. These undistorted and functional scale models are especially useful for architects because they can be used, simultaneously, as functional elements of analysis and as decision-making elements during the design. Although they are versatile, in general, it is remarkable that these types of models are used very little for the study of the thermal performance of buildings. Subsequently, the theories related to the analysis of the experimental thermal data collected from the scale models and their applicability to the corresponding full-scale prototypes, will be explained. Thereafter, the experiments in laboratory and at outdoor conditions are detailed. Firstly, experiments carried out with simple cube models at different scales are explained. The prototype larger in size and the corresponding undistorted scale model have been subjected to same environmental conditions in every experimental test. Secondly, a step forward is taken carrying out some simultaneous experimental tests of an undistorted scale model, replica of a relatively simple lightweight and glazed building construction. This experiment consists of monitoring the undistorted scale model of the prototype workshop located in the School of Architecture (ETSAM) of the Technical University of Madrid (UPM). For the analysis of experimental data, known related theories and resources are applied, such as, direct comparisons, statistical analyses, Dimensional Analysis and last, but not least important, simulations. Simulations allow us, specifically, flexible comparisons with experimental data. Here, apart the use of the simulation software EnergyPlus, a simulation algorithm is developed ad hoc for this research. Finally, the discussion and conclusions of this research are exposed.