7 resultados para Silica gel functionalized
em Universidad Politécnica de Madrid
Resumo:
This article examines a new lightweight, slim, high energy efficient, light-transmitting, self-supporting envelope system, providing for seamless, free-form designs for use in architectural projects. The system exploits vacuum insulation panel technology. The research was based on envelope components already existing on the market and patents and prototypes built by independent laboratories, especially components implemented with silica gel insulation, as this is the most effective transparent thermal insulation there is today. The tests run on these materials revealed that there is not one that has all the features required of the new envelope model, although some do have properties that could be exploited to generate this envelope, namely, the vacuum chamber of vacuum insulation panels, the use of monolithic aerogel as insulation in some prototypes, and reinforced polyester barriers. These three design components have been combined and tested to design a new, variable geometry, energy-saving envelope system that also solves many of the problems that other studies ascribe to the use of vacuum insulation panels.
Resumo:
This article examines a new lightweight, slim, high energy efficient, light-transmitting, selfsupporting envelope system, providing for seamless, free-form designs for use in architectural projects. The system exploits vacuum insulation panel technology. The research was based on envelope components already existing on the market and patents and prototypes built by independent laboratories, especially components implemented with silica gel insulation, as this is the most effective transparent thermal insulation there is today.
Resumo:
This article examines, from the energy viewpoint, a new lightweight, slim, high energy efficient, light-transmitting envelope system, providing for seamless, free-form designs for use in architectural projects. The research was based on envelope components already existing on the market, especially components implemented with granular silica gel insulation, as this is the most effective translucent thermal insulation there is today. The tests run on these materials revealed that there is not one that has all the features required of the new envelope model, although some do have properties that could be exploited to generate this envelope, namely, the vacuum chamber of vacuum insulated panels (VIP), the monolithic aerogel used as insulation in some prototypes, reinforced polyester barriers. By combining these three design components — the high-performance thermal insulation of the vacuum chamber combined with monolithic silica gel insulation, the free-form design potential provided by materials like reinforced polyester and epoxy resins—, we have been able to define and test a new, variable geometry, energy-saving envelope system.
Resumo:
This article examines a new lightweight, slim, high energy efficient, light-transmitting, self-supporting envelope system, providing for seamless, free-form designs for use in architectural projects. The system exploits vacuum insulation panel technology. The research was based on envelope components already existing on the market and patents and prototypes built by independent laboratories, especially components implemented with silica gel insulation, as this is the most effective transparent thermal insulation there is today. The tests run on these materials revealed that there is not one that has all the features required of the new envelope model, although some do have properties that could be exploited to generate this envelope, namely, the vacuum chamber of vacuum insulation panels, the use of monolithic aerogel as insulation in some prototypes, and reinforced polyester barriers. These three design components have been combined and tested to design a new, variable geometry, energy-saving envelope system that also solves many of the problems that other studies ascribe to the use of vacuum insulation panels.
Resumo:
La Turbera de Padul, en la Provincia de Granada, ofrece unas posibilidades de estudio muy atractivas desde el punto de vista de la reconstrucción paleoambiental. Se trata de una fosa tectónica subsidente de naturaleza detrítica, a cuyo techo aparecen alternantes niveles de turba. El sondeo, de 107 metros, se realizó en un punto donde los estratos de turba aparecen a mayor profundidad, lo que permite obtener un registro geoquímico orgánico con mucho detalle con una antigüedad de hasta 1Ma. Se tomaron muestras cada 20 cm para el análisis de biomarcadores. Estos biomarcadores se obtuvieron mediante extracción Soxhlet, posterior separación de fracciones de diferente polaridad mediante Cromatografía en Columna, con Gel de Sílice y Alúmina, y posteriormente el análisis e identificación por Cromatografía de Gases - Espectrometría de masas, con confirmación de los compuestos químicos identificados por comparación con Bibliotecas de Espectros de Masas. La datación del sondeo se realizó utilizando distintos métodos como datación por 14C, U/Th, y datación por racemización de aminoácidos. Los resultados dataron el muro del sondeo con una antigüedad de 1 millón de años. El estudio de los biomarcadores ha permitido identificar episodios con distintas características en un escenario complejo, como es la Turbera de Padul, donde el aporte de agua por fusión nival complica la interpretación paleoambiental, y es la responsable de la existencia de la lámina de agua en la turbera en periodos secos con temperaturas elevadas. Se han identificado series de n-alcanos, de n-metilcetonas y series de nalcanoles, que han permitido identificar la aportación de materia orgánica de distintas fuentes al sedimento y por tanto la interpretación paleoambiental. La identificación de diterpenoides fenólicos (cis-Totatol, trans-Totarol y Ferruginol) han permitido identificar episodios de clima templado y húmedo con proliferación de cupresáceas, y precipitaciones abundantes. Por otro lado, se han identificado triterpenoides como el Friedelan-3-ona (Friedelin) y el A-norfriedel-8en-10-ona, cuya relación como precursor (Friedelin) y producto (A-norfriedel-8en-10-ona) ha permitido identificar episodios con fluctuaciones del espesor de la lámina de agua y aporte de material vegetal. ABSTRACT The Bog of Padul, in the province of Granada, offers very attractive possibilities for the study of paleoenvironmental reconstruction. It is a subsiding graben of detrital nature, whose upper part appear alternating peat levels. The core of 107 meters, obtained from a borehole drilled in a place where the layers of peat appear deeper, allowing to obtain organic geochemist information along the last 1 million years. Every 20 cm samples for biomarkers analysis were taken. These biomarkers were obtained by Soxhlet extraction, subsequent separation of fractions of different polarity by column chromatography with silica gel and alumina, and then analyzed and identified by gas chromatography - mass spectrometry, with confirmation of the chemicals identified by comparison to mass spectral libraries. The dating of the core was conducted using different methods such as 14C dating, U/Th, and amino acid racemization dating. The results dated the base of the core to be 1 million years old. The study has identified biomarkers episodes with different characteristics in a complex scenario, such as the Bog of Padul, where the contribution of snowmelt water complicates the paleoenvironmental interpretation, and is responsible for the existence of a sheet of water in dry periods with high temperatures. There have been identified series of n-alkanes, n-methyl ketones and series of n-alkanols that have shown the contribution of different organic matter sources to the sediment and therefore allowed to paleo interpretation. The identification of phenolic diterpenoids (cis-Totatol, trans-Totarol and Ferruginol) have identified episodes of mild and humid climate with proliferation of Cupressaceae, and abundant rainfall. In addition, triterpenoids have been identified, as the friedelan-3-one (friedelin) and the A-norfriedel-8en-10-one, whose relationship as precursor (friedelin) and product (A-norfriedel-8en-10-one) has identified episodes with fluctuations on the thickness of the sheet of water and supply of plant material debris.
Resumo:
Conductive submicronic coatings of carbon black (CB)/silica composites have been prepared by a sol-gel process and deposited by spray-coating on glazed porcelain tiles. Stable CB dispersions with surfactant were rheologically characterized to determine the optimum CB-surfactant ratio. The composites were analyzed by Differential Thermal and Thermogravimetric Analysis and Hg-Porosimetry. Thin coatings were thermally treated in the temperature range of 300-500degC in air atmosphere. The microstructure of the coatings was determined by scanning electron microscopy and the structure evaluated by confocal Raman spectroscopy. The electrical characterization of the samples was carried out using dc intensity-voltage curves. The coatings exhibit good adhesion, high density and homogeneous distribution of the conductive filler (CB) in the insulate matrix (silica) that protects against the thermal degradation of the CB nanoparticles during the sintering process. As consequence, the composite coatings show the lowest resistivity values for CB-based films reported in the literature, with values of ~7times10 -5Omegam.
Resumo:
Pure and quinine doped silica coatings have been prepared over sodalime glasses. The coatings were consolidated at low temperature (range 60-180 A degrees C) preserving optical activity of quinine molecule. We designed a device to test the guiding properties of the coatings. We confirmed with this device that light injected in pure silica coatings is guided over distances of meters while quinine presence induces isotropic photoluminescence. With the combined use of both type of coatings, it is possible to design light guiding devices and illuminate regions in glass elements without electronic circuits.