8 resultados para Shipbuilding industry
em Universidad Politécnica de Madrid
Resumo:
Acourse focused on the acquisition of integration competencies in ship production engineering, organized in collaboration with selected industry partners, is presented in this paper. The first part of the course is dedicated to Project Management: the students acquire skills in defining, using MS-PROJECT, the work breakdown structure (WBS), and the organization breakdown structure (OBS) in Engineering projects, through a series of examples of increasing complexity with the final one being the construction planning of a vessel. The second part of the course is dedicated to the use of a database manager, MS-ACCESS, in managing production related information.Aseries of increasing complexity examples is treated, the final one being the management of the piping database of a real vessel. This database consists of several thousand pipes, for which a production timing frame is defined connecting this part of the course with the first one. Finally, the third part of the course is devoted to working withFORAN,an Engineering Production application developed bySENERand widely used in the shipbuilding industry. With this application, the structural elements where all the outfittings will be located are defined through cooperative work by the students, working simultaneously in the same 3D model. In this paper, specific details about the learning process are given. Surveys have been posed to the students in order to get feedback from their experience as well as to assess their satisfaction with the learning process, compared to more traditional ones. Results from these surveys are discussed in the paper.
Resumo:
A high productivity rate in Engineering is related to an efficient management of the flow of the large quantities of information and associated decision making activities that are consubstantial to the Engineering processes both in design and production contexts. Dealing with such problems from an integrated point of view and mimicking real scenarios is not given much attention in Engineering degrees. In the context of Engineering Education, there are a number of courses designed for developing specific competencies, as required by the academic curricula, but not that many in which integration competencies are the main target. In this paper, a course devoted to that aim is discussed. The course is taught in a Marine Engineering degree but the philosophy could be used in any Engineering field. All the lessons are given in a computer room in which every student can use each all the treated software applications. The first part of the course is dedicated to Project Management: the students acquire skills in defining, using Ms-PROJECT, the work breakdown structure (WBS), and the organization breakdown structure (OBS) in Engineering projects, through a series of examples of increasing complexity, ending up with the case of vessel construction. The second part of the course is dedicated to the use of a database manager, Ms-ACCESS, for managing production related information. A series of increasing complexity examples is treated ending up with the management of the pipe database of a real vessel. This database consists of a few thousand of pipes, for which a production timing frame is defined, which connects this part of the course with the first one. Finally, the third part of the course is devoted to the work with FORAN, an Engineering Production package of widespread use in the shipbuilding industry. With this package, the frames and plates where all the outfitting will be carried out are defined through cooperative work by the studens, working simultaneously in the same 3D model. In the paper, specific details about the learning process are given. Surveys have been posed to the students in order to get feed-back from their experience as well as to assess their satisfaction with the learning process. Results from these surveys are discussed in the paper
Resumo:
En la situación actual, tanto las posibilidades de contratar como los resultados económicos de un astillero, dependen de su capacidad para construir un buque en el plazo mas corto posible. Dentro de los trabajos de diseño y construcción de de un buque el trabajo de tuberías ha sido el que tradicionalmente ha condicionado los plazos de construcción. En este estudio se considerara que se han tenido en cuenta los criterios necesarios para que las instalaciones del buque funcionen correctamente y se verá como los sistemas de diseño influyen en el coste y plazo del buque y, por tanto, en la productividad del astillero. Se estudian los distintos procesos de diseño, fabricación y montaje de tuberías, la evolución de estos procesos a lo largo del tiempo, los módulos de armamento que se realizan en los astilleros, los modelos de cámara de máquinas, y los sistemas de ayuda al diseño por ordenador. El autor, en su puesto de Jefe de la Oficina Tecnológica de la Factoría de Sevilla de Astilleros Españoles en los últimos 12 años, ha tomado parte activa en esta evolución, formando parte de un equipo que ha situado a este astillero entre los mas avanzarlos de Europa. Todo lo anterior sirve de base para la segunda parte de este estudio, donde se abordan las que, en opinión del autor, son las nuevas tendencias en el diseño de tuberías en la construcción naval. V Integración del CAD/CAM o CIM : CAD = computer aided design o diseño asistido por ordenador, CAM = computer aided manufacturing o fabricación asistida por ordenador, CIM = computer integrated manufacturing o fabricación integrada por ordenador. Se estudia la integración de los procesos de diseño con el resto de los procesos de gestión y de producción de un astillero, proponiéndose un modelo de cómo el autor ve esta integración. Se comenta la actual tendencia a pasar de las automatizaciones duras con maquinas especializadas para cada proceso, a las automatizaciones blandas en las que un robot puede realizar distintos procesos modificando su programación. Se estudian las nuevas posibilidades de la normal i zacio'n, de los planos parametrizados y de la tecnología de grupos aportando algunos ejemplos. Se estudia también como los procesos anteriores conducirán a una optimización del producto en sí, es decir a conseguir mejores buques. En las conclusiones destacamos como el camino que tienen los países desarrollados, como el nuestro, para mantener una industria competitiva de construcción naval va por la mecanización de los procesos constructivos siguiendo las tendencias anteriores y obteniendo buques optimizados. vi SUMMARY Under the present situation the possibilities to contract and the economical results of a Shipyard depend on its capacity to build a ship within the shortest time. i Within the works of design and construction of a ship, piping work has traditionally conditioned the construction time. In this study it shall be considered that the necessary criteria for the ship installations to operate correctly have been taken into account and it shall be noticed how the design systems influence on the cost and time of a ship and therefore on the Shipyard's productivity. Studies are made of different design processes, manufacturing and installation of piping, evolution of these processes along the time, outfitting modules made in the Shipyard, engine room models and computerized design aid systems. The author, in his post of Chief of the Technological Office of Sevilla Shipyard of Astilleros Españoles for the last 12 years, has taken an active part in this evolution, making part of a team which has placed this Shipyard among the most advanced in Europe. All of the above is used for the second part of this study, whereby an approach is made to those who, in the author's opinion, are the new trends in the piping design of shipbuilding. vii Integration of CAD/CAM or CIM: CAD = computer aided design, CAM = computer aided manufacturing, CIM = computer integrated manufacturing. i A study is made of the integration of design processes with the remaining step and production Shipyard processes, proposing a model of how the author views this integration. Comments are made on the present trend to go from hard automations with specialized machines for each process to soft automations, in which a robot can carry out different processes modifying its programmes. Studies are made of: New possibility of standardization, parametrized drawings and group technology, bringing some examples. It is also studied how the above processes shall lead to optimize the product itself, that is, to obtain better ships. In the conclusions we stand out how the way of developed countries (as ours) to maintain a competitive shipbuilding industry is by computerizing constructive processes, following the above trends and obtaining better ships.
Resumo:
El proceso de soldadura por láser desarrollado en los últimos años ha puesto de manifiesto las posibilidades de aplicación de esta tecnología en diferentes sectores productivos, principalmente en la industria automovilística, en la cual se han demostrado sus ventajas en términos de productividad, eficiencia y calidad. El uso de la tecnología láser, ya sea híbrida o pura, reduce el input térmico al limitar la zona afectada por el calor, sin crear deformaciones y, por tanto, disminuye los re-trabajos post-soldadura necesarios para eliminarlas. Asimismo, se aumenta la velocidad de soldadura, incrementando la productividad y calidad de las uniones. En la última década, el uso de láseres híbridos, (láser + arco) de gran potencia de Neodimio YAG, (Nd: YAG) ha sido cada vez más importante. La instalación de este tipo de fuentes de láser sólido de gran potencia ha sido posible en construcción naval debido a sus ventajas con respecto a las instalaciones de láser de C02 existentes en los astilleros que actualmente utilizan esta tecnología. Los láseres de C02 están caracterizados por su gran potencia y la transmisión del haz a través de espejos. En el caso de las fuentes de Nd:YAG, debido a la longitud de onda a la cual se genera el haz láser, su transmisión pueden ser realizada a través de fibra óptica , haciendo posible la utilización del cabezal láser a gran distancia de la fuente, aparte de la alternativa de integrar el cabezal en unidades robotizadas. El proceso láser distribuye el calor aportado de manera uniforme. Las características mecánicas de dichas uniones ponen de manifiesto la adecuación de la soldadura por láser para su uso en construcción naval, cumpliendo los requerimientos exigidos por las Sociedades de Clasificación. La eficiencia energética de los láseres de C02, con porcentajes superiores al 20%, aparte de las ya estudiadas técnicas de su instalación constituyen las razones por las cuales este tipo de láser es el más usado en el ámbito industrial. El láser de gran potencia de Nd: YAG está presente en el mercado desde hace poco tiempo, y por tanto, su precio es relativamente mayor que el de C02, siendo sus costes de mantenimiento, tanto de lámparas como de diodos necesarios para el bombeo del sólido, igualmente mayores que en el caso del C02. En cambio, el efecto de absorción de parte de la energía en el plasma generado durante el proceso no se produce en el caso del láser de Nd: YAG, utilizando parte de esa energía en estabilizar el arco, siendo necesaria menos potencia de la fuente, reduciendo el coste de la inversión. En función de la aplicación industrial, se deberá realizar el análisis de viabilidad económica correspondiente. Dependiendo de la potencia de la fuente y del tipo de láser utilizado, y por tanto de la longitud de onda a la que se propaga la radiación electromagnética, pueden existen riesgos para la salud. El láser de neodimio se propaga en una longitud de onda, relativamente cercana al rango visible, en la cual se pueden producir daños en los ojos de los operadores. Se deberán establecer las medidas preventivas para evitar los riesgos a los que están expuestos dichos operadores en la utilización de este tipo de energía. La utilización del láser de neodimio: YAG ofrece posibilidades de utilización en construcción naval económicamente rentables, debido su productividad y las buenas características mecánicas de las uniones. Abstract The laser welding process development of the last years shows broad application possibilities in many sectors of industry, mostly in automobile production. The advantages of the laser beam process produce higher productivity, increasing the quality and thermal efficiency. Laser technology, arc-hybrid or pure laser welding, reduces thermal input and thus a smaller heat-affected zone at the work piece. This means less weldment distortion which reduces the amount of subsequent post-weld straightening work that needs to be done. A higher welding speed is achieved by use of the arc and the laser beam, increasing productivity and quality of the joining process. In the last decade use of hybrid technology (laser-GMA hybrid method) with high power sources Nd:YAG lasers, gained in importance. The installation of this type of higher power solid state laser is possible in shipbuilding industrial applications due to its advantages compare with the C02 laser sources installed in the shipyards which use this technology. C02 lasers are characterised by high power output and its beam guidance is via inelastic system of mirrors. In the case of Nd:YAG laser, due to its wavelength, the laser beam can be led by means of a flexible optical fibre even across large distances, which allows three dimensional welding jobs by using of robots. Laser beam welding is a process during which the heat is transferred to the welded material uniformly and the features of the process fulfilled the requirements by Classification Societies. So that, its application to the shipbuilding industry should be possible. The high quantum efficiency of C02 laser, which enabled efficiency factors up to 20%, and relative simple technical possibilities of implementation are the reasons for the fact that it is the most important laser in industrial material machining. High power Nd: YAG laser is established on the market since short time, so that its price is relatively high compared with the C02 laser source and its maintenance cost, lamp or diode pumped solid state laser, is also higher than in the case of C02 lasers. Nevertheless effect of plasma shielding does not exist with Nd:YAG lasers, so that for the gas-shielding welding process the optimal gases can be used regarding arc stability, thus power source are saved and the costs can be optimised. Each industrial application carried out needs its cost efficiency analysis. Depending on the power output and laser type, the dangerousness of reflected irradiation, which even in some meters distance, affects for the healthy operators. For the YAG laser process safety arrangements must be set up in order to avoid the laser radiation being absorbed by the human eye. Due to its wavelength of radiation, being relatively close to the visible range, severe damage to the retina of the eye is possible if sufficient precautions are not taken. Safety aspects are of vital importance to be able to shield the operator as well as other personal. The use of Nd:YAG lasers offers interesting and economically attractive applications in shipbuilding industry. Higher joining rates are possible, and very good mechanical/technological parameters can be achieved.
Resumo:
El motivo de abordar esta Tesis responde al hecho personal de haber vivido históricamente momentos cumbre de la Construcción Naval en España y no dejar de plantearme, a pesar de mi distancia del sector desde el punto de vista profesional, en las opciones de futuro para volver a ser competitivos en un sector que ha tenido un peso tan importante en la economía española, y que tanto ha ilusionado a centenares de profesionales y compañeros a lo largo de muchas décadas con el optimismo de estar aportando valor para que España fuera competitiva. A lo largo de los últimos años, y la relación con el ámbito de la dirección de Empresas desde el punto de vista de una Escuela de Negocios, así como el contacto con enfoques estratégicos en sectores muy diversos me animó a plantearme la Tesis con el objetivo de reflejar el estado actual del sector y poder valorar alternativas de futuro para la Construcción Naval española, aun sabiendo que son muchos los “maestros” realmente autorizados en nuestros país, con amplios conocimientos y experiencia, que muchas veces, a pesar de las propuestas y de los esfuerzos que han realizado para impulsar el sector, se han encontrado con situaciones adversas, bien de tipo económico, social‐laboral, político ‐a nivel nacional, europeo o global‐, etc., que han impedido un fortalecimiento del sector como todos hubiéramos deseado. La presión histórica ejercida por los países competidores en Construcción naval del ámbito asiático y lejano oriente, así como los compromisos derivados de las Directivas europeas, han obligado al sector de la Construcción Naval en España a buscar unos nuevos posicionamientos estratégicos presentes y, sobre todo, de futuro. Partiendo de un análisis del sector naval, tanto del mercado nacional como del internacional, con especial foco en los países líderes, se plantea investigar, siguiendo el modelo de Porter, las fuerzas competitivas que han influido en estas últimas décadas y que han conducido a la situación actual, valorando la estructura competitiva, el entorno relevante y los efectos de la globalización, con las amenazas de los nuevos y actuales competidores y las barreras existentes. Para abordar esta investigación se ha realizado un análisis del sector naval con la siguiente metodología: 1. Análisis del estado actual de la construcción naval en España. 2. Análisis del estado actual de la construcción naval en el mundo. 3. Estudio de la demanda en el mercado y evolución de la misma en los últimos años: muy centrada en los países líderes y más competitivos. 4. Estudio de las perspectivas de negocio en el sector marítimo y oceánico: estudio particular del transporte marítimo y una comparativa con la explotación de recursos oceánicos. Finalmente se decidió no abordar por falta de datos de futuro las construcciones militares. 5. Estudio de características de la industria naval española y capacidad de los astilleros. Se ha focalizado especialmente en la construcción para valorar la capacidad de futuro. 6. Análisis de fuerzas competitivas de la industria naval española a partir del modelo de Porter. En esta parte se incluyen alguno de los factores críticos externos e internos que ayudan a identificar barreras y estrategias en el entorno de la construcción naval como sector global. 7. Identificación de las oportunidades de negocio hacia el 2050. 8. Alternativas para una estrategia competitiva de actuación frente a las oportunidades de futuro en el 2050. Con esta Tesis se aporta un estudio competitivo actualizado, de acuerdo con el modelo de Porter, con el fin de proponer una posible estrategia competitiva de futuro, que posicione competitivamente la industria naval y el sector marítimo en España en las próximas décadas. ABSTRACT The reason for addressing this thesis responds to my personal experience about having lived historical moments summit Shipbuilding in Spain. Despite my distance from this industry from a professional point of view, I have never stopped wonder myself which are the options for the future to become competitive in an industry that has had such an important weight in the Spanish economy, which has excited so hundreds of professionals and peers through many decades with optimism to be adding value to Spain in order to be competitive again. Over recent years, and the relationship with the field of business management from the point of view of a business school, as well as contact with strategic approaches in diverse sectors encouraged me to wonder Thesis order to reflect the current state of the sector and to evaluate future alternatives for the Spanish Shipbuilding, knowing that many "teachers" really allowed in our country, with extensive knowledge and experience that often, despite proposals and the efforts that have been made to boost the sector, have met with adverse situations, whether economic, social and labor, political kind ‐at national, European or global‐level, etc., that have prevented a strengthening of all sectors we wished. The historical pressure from competing countries in Shipbuilding Asian area and Far East, as well as commitments arising from EU directives, have forced the shipbuilding industry in Spain to seek a new strategic positions present and, above all, future. Starting from an analysis of the shipbuilding sector, both national and international market, with special focus on the leading countries, we propose to investigate, following the model of Porter, the competitive forces that have influenced recent decades and have led to the current situation, assessing the competitive structure of the relevant environment and the effects of globalization, with the threat of new and existing competitors and barriers. To address this research has analyzed the naval sector with the following methodology: 1. Analysis of the current state of shipbuilding in Spain. 2. Analysis of the current state of shipbuilding in the world. 3. Study of the demand in the market and evolution of the same in recent years: very focused on the leading and most competitive countries. 4. Study of business prospects in the maritime and oceanic sector: private study of maritime transport and a comparison with the exploitation of ocean resources. Finally it was decided not to address a lack of data future military construction. 5. Study of characteristics of the Spanish shipbuilding and shipyard capacity. It is particularly focused on building the capacity to assess future. 6. Analysis of competitive forces of the Spanish shipbuilding industry from the model of Porter. In this part they include some critics of the external and internal factors that help identify barriers and strategies in the environment of global shipbuilding sector. 7. Identification of business opportunities by 2050. 8. Alternatives to a competitive strategy of action against future opportunities in 2050. This thesis has sought to provide a competitive study updated according to Porter's model, in order to propose a possible future competitive strategy to reach a competitive position at the shipbuilding industry and the maritime sector in Spain in the coming decades. The historical pressure from competing countries in the Asian sphere Shipbuilding and Far East, as well as commitments arising from EU directives have forced the shipbuilding industry in Spain to seek a new strategic positioning. Starting from an analysis of the shipbuilding sector, both national and international market, with a special focus on the leading countries, it is proposed to analyze, following the model of Porter, the competitive forces that have influenced in recent decades and have led to the current situation, studying the competitive structure of the relevant environment and the effects of globalization, with the threat of new and existing competitors and barriers. It concludes with a forecast of future market and business opportunities arising in the global environment of maritime and naval Industry, in order to propose a possible competitive strategy for the near future, which could help to achieve a competitive position on the shipbuilding and maritime sector in Spain for the coming decades.
Resumo:
Uno de los aspectos más complicados del diseño de sistemas HVAC en buques es la correcta evaluación de las necesidades de aire fresco y el correcto dimensionado de los conductos que suministran dicho aire y evacuan el calor generado a bordo. Contrariamente a lo que sucede en los sistemas de tuberías, las características particulares del caudal de aire hacen que el dimensionado de los conductos sea muy sensible al trazado y geometría de los mismos, por lo que para obtener un buen diseño es necesaria una relación muy estrecha y una integración bidireccional entre los cálculos y el trazado de los propios conductos en el buque. Asumida la utilización de sistemas CAD/CAM para las tareas de diseño, históricamente, aquellos que permitían modelar conductos HVAC no incluían en su alcance de suministro los aspectos de cálculo, y como consecuencia de ello, el trazado de conductos se reducía a la inclusión en el modelo 3D de circuitos y sistemas previamente calculados y dimensionados, Así, servían únicamente para calcular interferencias con otros elementos del modelo 3D y para obtener posteriormente planos de fabricación y montaje. Esto, que por sí no es poco, dejaba el diseño de sistemas HVAC pendiente de una importante interacción manual y de habituales retrabajos, ya que cualquier modificación en el trazado de los conductos, consecuencia de otras necesidades del diseño, obligaba a los diseñadores a recalcular y redimensionar los conductos en un entorno diferente al del propio sistema CAD/CAM, y volver a realizar el modelado de los mismos, reduciendo significativamente las ventajas de la utilización de un modelo 3D. Partiendo de esta situación real, y con objeto de solucionar el problema que para el diseño y la propia producción del buque se creaba, se concibió una herramienta que permitiera la definición en el modelo 3D de diagramas de ventilación, el cálculo de pérdidas de presión, el dimensionado automático de los conductos, y que toda esta información pudiera estar disponible y reutilizarse en las etapas posteriores del diseño. Con ello, los diseñadores podrían realizar su trabajo en un entorno único, totalmente integrado con el resto de disciplinas. El objeto de esta Tesis Doctoral es analizar en detalle el problema y las ineficiencias actuales del diseño de HVAC, describir la innovadora herramienta concebida para paliar estas ineficiencias, detallando las bases sobre la que se construye, y destacar las ventajas que se obtienen de su uso. La herramienta en cuestión fue concebida como una funcionalidad adicional del sistema CAD/CAM naval FORAN, referente tecnológico en el mundo del diseño y la construcción navales, y como consecuencia de ellos se llevó a cabo el desarrollo correspondiente. En la actualidad, el sistema FORAN incluye en su alcance de suministro una primera versión de esta herramienta, cuya utilidad queda avalada por el uso que de la misma hacen astilleros y oficinas técnicas en todo el mundo. Esta Tesis Doctoral es eminentemente práctica. No es un estudio teórico de dudosa aplicación, sino que tiene por objeto aportar una solución eficiente a un problema real que muchos astilleros y oficinas técnicas, incluidas los más avanzados, padecen hoy en día. No tiene otra motivación que servir de ayuda para lograr diseñar y construir mejores barcos, en un plazo más corto, y a un coste menor. Nada más, pero nada menos. ABSTRACT One of the most complicated aspects of the design of HVAC systems in shipbuilding is the correct evaluation of the fresh air needs, the correct balancing of the ducts that supply this air and evacuate the existing heat on board. In opposition to piping systems, due to the particular characteristics of the air flow, the balancing of the ducts is very sensitive to the routing and the aspect of the ducts, so the correct design requires a close interconnectivity between calculations and routing. Already assumed the use of CAD/CAM systems for design tasks, historically, those CAD/CAM systems capable of modelling HVAC ducts did not cover calculation aspects, with the result that the routing of HVAC ducts was reduced solely to the input of previously balanced circuits into the 3D Product Model for the purpose of interference checking and generation of fabrication and assembly drawings. This situation, not negligible at all, put the design of HVAC ducts very dependent on manual operations and common rework task, as any modification in the routing of the HVAC ducts, derived from design needs, obliged engineers to re-balance the ducts and eventually to re-size them independently of the CAD-CAM environment, thus annulling the advantages of the 3D Product Model. With this situation in mind, and with the objective of filling the gap created in the design and construction of the ship, it was conceived a tool allowing the definition, within the 3D Product model, of HVAC diagrams, the calculation of pressure drops, the automatic dimensioning of ducts. With this, engineers could make the complete HVAC design in a single working environment, fully integrated with the rest of the disciplines. The present Ph. D. thesis analyses in deep the existing problem and the current lack of efficiency in HVAC design, describes the innovative tool conceived to minimize it, details the basis on which the tool is built, and highlights the advantages of its use. This tool was conceived as an additional functionality of the marine CAD/CAM system FORAN, a technological reference in the shipdesign and shipbuilding industry. As a consequence, it was developed, and nowadays FORAN System includes in its scope of supply a first version of the tool, with its usefulness endorsed by the fact that it is used by shipyards and shipdesign offices all over the world. This Ph. D. thesis is on top everything, of practical nature. It is not a theoretical study with doubtful application. On the contrary, its objective is to provide with an efficient solution for solving a real problem that many shipyards and shipdesign offices, including those more advanced, suffer nowadays. It has no other motivation that to help in the process of designing and building better and cheaper ships, within a shorter deliver time. Nothing more, but nothing less.
Resumo:
El impacto ambiental directo de la construcción naval, que se refiere a la construcción, mantenimiento y reparación de buques, no es de ninguna manera pequeño. La construcción de buques depende de un gran número de procesos que por sí mismos constituyen un riesgo significativo de daño medio ambiental en el entorno de los astilleros y que conducen a emisiones significativas de gases de efecto invernadero. Además, la construcción naval utiliza algunos materiales que no sólo puede llevar a graves consecuencias para el daño ambiental durante su producción y su uso en el proceso de construcción de la nave, sino también posteriormente durante la reparación de buques, el funcionamiento y las actividades de reciclaje. (OECD 2010) El impacto ambiental directo de la construcción naval constituye de por sí, un desafío importante para la industria. Pero este impacto no queda limitado a su entorno inmediato, aunque la Construcción Naval no es directamente responsable de la repercusión en el medio ambiente de la operación y el reciclaje de buques comerciales, si es una parte integral de estas actividades. (OECD 2010) En esta tesis se sugiere que el sector de la construcción naval puede y debe aceptar sus responsabilidades ambientales no solo en el entorno del astillero; también en la operación de los buques, sus productos; tomando conciencia, a través de un enfoque de ciclo de vida, del desempeño ambiental de la industria en su conjunto. Es necesario intensificar esfuerzos a medida que el impacto ambiental de la industria es cada vez más visible en el dominio público, en pro de un crecimiento verde que permita aumentar la capacidad de actividad o producción económica al tiempo que reduce o elimina, los impactos ambientales. Este será un imperativo para cualquier futura actividad industrial y exigirá naturalmente conocimiento ambiental intrincado perteneciente a todos los procesos asociados. Esta tesis - aprovechando como valiosa fuente de información los desarrollos y resultados del proyecto europeo: “Eco_REFITEC”. FP7-CP-266268, coordinado por el autor de esta Tesis, en nombre de la Fundación Centro Tecnológico SOERMAR - tiene como primer objetivo Investigar la interpretación del concepto de Construcción Naval y Transporte Marítimo sostenible así como las oportunidades y dificultades de aplicación en el sector de la Construcción y reparación Naval. Ello para crear o aumentar el entendimiento de la interpretación del concepto de transporte marítimo sostenible y la experiencia de su aplicación en particular en los astilleros de nuevas construcciones y reparación. Pretende también contribuir a una mejor comprensión de la industria Marítima y su impacto en relación con el cambio climático, y ayudar en la identificación de áreas para la mejora del desempeño ambiental más allá de las operaciones propias de los astilleros; arrojando luz sobre cómo puede contribuir la construcción naval en la mejora de la eficiencia y en la reducción de emisiones de CO2 en el transporte marítimo. Se espera con este enfoque ayudar a que la Industria de Construcción Naval vaya abandonando su perspectiva tradicional de solo mirar a sus propias actividades para adoptar una visión más amplia tomando conciencia en cuanto a cómo sus decisiones pueden afectar posteriormente las actividades aguas abajo, y sus impactos en el medio ambiente, el cambio climático y el crecimiento verde. Si bien cada capítulo de la tesis posee su temática propia y una sistemática específica, a su vez retoma desde una nueva perspectiva cuestiones importantes abordadas en otros capítulos. Esto ocurre especialmente con algunos ejes que atraviesan toda la tesis. Por ejemplo: la íntima relación entre el transporte marítimo y el sector de construcción naval, la responsabilidad de la política internacional y local, la invitación a buscar nuevos modos de construir el futuro del sector a través de la consideración de los impactos ambientales, económicos y sociales a lo largo de ciclo de vida completo de productos y servicios. La necesidad de una responsabilidad social corporativa. Estos temas no se cierran ni terminan, sino que son constantemente replanteados tratando de enriquecerlos. ABSTRACT The direct environmental impact of shipbuilding, which refers to construction, maintenance and repair of vessels, is by no means small. Shipbuilding depends on a large number of processes which by themselves constitute significant risks of damage to the shipyards‘ surrounding environment and which lead to significant emissions of greenhouse gases. In addition, shipbuilding uses some materials which not only may carry serious implications for environmental harm during their production and usage in the ship construction process, but also subsequently during ship repairing, operation, and recycling activities. (OECD 2010) The direct environmental impact of shipbuilding constitutes a major challenge for the industry. But this impact is not limited on their immediate surroundings, but while not being directly responsible for the impact on the environment from the operation and final recycling of commercial ships, shipbuilding is an integral part of these activities. (OECD 2010) With this in mind, this thesis is suggested that the shipbuilding industry can and must take up their environmental responsibilities not only on their immediate surroundings, also on the ships operation, becoming aware through a “life cycle” approach to ships, the environmental performance of the industry as a whole. As the environmental impact of the industry is becoming increasingly visible in the public domain much more effort is required for the sake of “green growth” which implies the ability to increase economic activity or output while lowering, or eliminating, environmental impacts. This will be an imperative for any future industrial activity and will naturally demand intricate environmental knowledge pertaining to all associated processes. This thesis making use as a valuable source of information of the developments and results of an European FP7-collaborative project called "Eco_REFITEC, coordinated by the author of this thesis on behalf of the Foundation Center Technology SOERMAR, has as its primary objective to investigate the interpretation of a sustainable Shipbuilding and Maritime Transport concept and the challenges and opportunities involved in applying for the Shipbuilding and ship repair Sector. It is done to improve the current understanding regarding sustainable shipping and to show the application experience in shipbuilding and ship repair shipyards. Assuming that sustainability is more than just an act but a process, this academic work it also aims to contribute to a much better understanding of the maritime industry and its impact with respect to climate change, and help in identifying areas for better environmental performance beyond the shipyard's own operations; shedding light on how shipbuilding can contribute in improving efficiency and reducing CO2 emissions in shipping. It is my hope that this thesis can help the Shipbuilding Industry to abandon its traditional perspective where each simply looks at its own activities to take a broader view becoming aware as to how their decisions may further affect downstream activities and their impacts on the environment, climate change and green growth. Although each chapter will have its own subject and specific approach, it will also take up and re-examine important questions previously dealt with. This is particularly the case with a number of themes which will reappear as the thesis unfolds. As example I will point to the intimate relationship between the shipping and shipbuilding industry, the responsibility of international and local policy, the call to seek other ways of building the future of the sector through the consideration of the environmental, economic and social impacts over the full life cycle of the products and services, the need for a corporate social responsibility. These questions will not be dealt with once and for all, but reframed and enriched again and again.
Resumo:
Durante los últimos años, la construcción de grandes yates ha evolucionado hacia conceptos y diseños más complejos dónde se ha priorizado en muchas ocasiones la estética arquitectónica y exigencias de confort de los armadores y operadores dejando en segundo plano aspectos clave de seguridad. Diferentes Organismos Internacionales y las Sociedades de Clasificación han venido adaptando sus requisitos a la problemática específica de este tipo de buques, tratando de compatibilizar tendencias de diseño con exigencias de resistencia, integridad estructural, estanqueidad y seguridad entre otras. En la actualidad, la construcción de grandes yates con esloras incluso por encima de los 100 metros, el aumento del número de pasajeros por encima del límite tradicional de 12, las nuevas tendencias de ahorro energético y protección medioambiental que se están implantando en la industria en general y marítima en particular, plantean una serie de desafíos tanto a los diseñadores como a las Sociedades de Clasificación que deben avanzar en sus reglamentaciones para cubrir estos y otros aspectos. Son precisamente estos aspectos medioambientales, tradicionalmente relegados en la industria de grandes yates los que están ocupando en la actualidad un primer plano en los desarrollos de normativa de diferentes Organismos Internacionales y Nacionales. El impacto que estas nuevas normativas van a tener sobre el diseño de grandes yates a motor centra el desarrollo de esta Tesis. Hasta donde ha podido conocer el doctorando, esta es la primera vez que en una Tesis Doctoral se abordan los principales mecanismos que regulan el diseño y la construcción de grandes yates a motor, se estudian y analizan las regulaciones internacionales en materia de protección medioambiental y de eficiencia energética aplicables a los yates, se seleccionan y describen un conjunto de tecnologías maduras de carácter medioambiental, susceptibles de ser empleadas en yates y se determina los parámetros y aspectos del diseño a aplicar al proyecto de grandes yates a motor como resultado de la aplicación de estas tecnologías, analizados bajo la perspectiva de la Sociedad de Clasificación y de los Organismos Internacionales. La Tesis comienza con un análisis de la industria de construcción de grandes yates, la flota existente de grandes yates, la cartera actual de pedidos y la evolución esperada del mercado. Aquí se pone de manifiesto que a pesar de la crisis económica global de los últimos años, este mercado goza relativamente de buena salud y las previsiones son favorables, particularmente para el sector en Europa. A continuación se aborda el estado del arte del diseño de yate grande, sus peculiaridades, particularmente estructurales y de armamento, que le diferencian de otros tipos de buques y las tendencias en su diseño. Se pone de manifiesto cómo el proyecto de estos yates ha evolucionado hacia yates de gran tamaño y complejidad técnica, debido a la demanda y necesidades actuales y cómo ha influido en aspectos como la disposición estructural. Seguidamente se describen los principales mecanismos que regulan el diseño y construcción de grandes yates, particularmente el Código de Grandes Yates Comerciales de la Maritime & Coastguard Agency del Reino Unido, y las Reglas y Reglamentos de la Sociedad de Clasificación Lloyd’s Register para la Clasificación de yates; por ser ambas organizaciones las que lideran el Registro y la Clasificación respectivamente de este tipo de buques, objeto del estudio. El doctorando ejerce su actividad profesional como inspector de Lloyd’s Register en una oficina técnica de apoyo y evaluación de diseño, siendo especialista en grandes yates, lo que ha permitido exponer de primera mano el punto de vista de la Sociedad de Clasificación. En el siguiente Capítulo se describen las principales reglamentaciones internacionales de carácter medioambiental que afectan al diseño, construcción y operación de los yates, algunas de las cuales, como es el caso del Convenio Internacional para el Control y la Gestión del Agua de Lastre y Sedimentos de los buques (BWM 2004) aún no ha entrado en vigor a la fecha de terminación de esta Tesis. Seguidamente se realiza una selección de tecnologías desde el punto de vista de protección medioambiental y ahorro energético y su aplicación al diseño y construcción de grandes yates. Algunas de estas tecnologías son maduras y ya habían sido utilizadas con éxito en otros tipos de buques, pero su aplicación a los yates entraña ciertos desafíos que se describen en este Capítulo. A continuación se determinan y analizan los principales parámetros de diseño de los yates grandes a motor como consecuencia de las tecnologías estudiadas y se indican una serie de aspectos de diseño bajo la perspectiva de la Sociedad de Clasificación y de los Organismos Marítimos Internacionales. Finalmente se llega a una serie de conclusiones y se identifican futuras líneas de investigación en relación a las tecnologías descritas en este trabajo. ABSTRACT In recent years, the building of large yachts has evolved into more complex concepts and designs where often prioritized architectural aesthetics and comfort requirements of owners and operators leaving in the background key security aspects. Several international organizations and classification societies have been adapting their requirements to the specific problems of this type of vessel, trying to reconcile demands design trends with resistance, structural integrity, watertightness and safety among others. At present, the building of large yachts with lengths even above 100 meters, the increase in passenger numbers over the traditional limit of 12, new trends of energy saving and environmental protection are being implemented in the marine industry in particular, they pose a number of challenges to both designers and classification societies that should update and improve their regulations to cover these and other aspects. It is precisely these environmental issues, traditionally relegated to the large yacht industry, which are currently occupying center stage in the development of rules of different international and national bodies. The impact that these new standards will have on the design of large motor yachts focuses the development of this thesis. As far as it is known, this is the first time in a doctoral thesis the main mechanisms regulating the design and construction of large motor yachts are addressed, the international regulations on environmental protection and energy efficiency requirements for yachts are studied and analyzed, a set of mature environmental technologies, capable of being applied to yachts are selected and described, the parameters and design aspects to be applied to large yacht projects as a result of the application of these technologies are determined and analyzed from the perspective of the Classification Society and international organizations. The thesis begins with an analysis of the shipbuilding industry of large yachts, the existing fleet of large yachts, the current backlog and the expected market developments. Here it becomes clear that despite the global economic crisis of recent years, this market enjoys relatively good health and prospects are favorable, particularly for the sector in Europe. Then the state of the art of large yacht design, its peculiarities, particularly structural and outfitting, that differentiate it from other types of ships and trends in design is discussed. It shows how the project of these yachts has evolved to large yachts and technical complexity, due to the demand and needs and how it has influenced the structural arrangement aspects. Then the main mechanisms regulating the design and construction of large yachts, particularly the Large Commercial Yacht Code developed by the Maritime & Coastguard Agency (UK) and the Lloyd’s Register Rules & Regulations for the Classification of Special Service Craft including yachts are described; the two organizations to be leading the registration and classification respectively of such vessels under study. The doctoral student practices his profession as a senior specialist to Lloyd’s Register in a technical support office, dealing with the design assessment of large yachts, which allowed exposing firsthand view of the Classification Society. In the next chapter describes the main international environmental regulations, affecting the design, construction and operation of yachts, some of which, such as the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWM 2004) has not yet entered into force at the date of completion of this thesis. Following is a selection of technologies from the point of view of environmental protection and energy saving and its application to design and construction of large yachts. Some of these technologies are mature and have already been used successfully in other ship types, but their application to yachts entails certain challenges that are described in this chapter. Then identifies and analyzes the main design parameters of large motor yachts as a result of the technologies studied and a number of design aspects are given from the perspective of Classification Society and international maritime organizations. Finally, a number of conclusions are exposed, and future research is identified in relation to the technologies described in this Thesis.