5 resultados para Sheets
em Universidad Politécnica de Madrid
Resumo:
Continuous and long-pulse lasers have been used for the forming of metal sheets in macroscopic mechanical applications. However, for the manufacturing of micro-electromechanical systems (MEMS), the use of ns laser pulses provides a suitable parameter matching over an important range of sheet components that, preserving the short interaction time scale required for the predominantly mechanical (shock) induction of deformation residual stresses, allows for the successful processing of components in a medium range of miniaturization without appreciable thermal deformation.. In the present paper, the physics of laser shock microforming and the influence of the different experimental parameters on the net bending angle are presented.
Resumo:
Laser Welding (LW) is more often used in manufacturing due to its advantages, such as accurate control, good repeatability, less heat input, opportunities for joining of special materials, high speed, capability to join small dimension parts etc. LW is dedicated to robotized manufacturing, and the fabrication cells are using various level of flexibility, from specialized robots to very flexible setups. This paper features several LW applications using two industrially-scaled manufacturing cells at UPM Laser Centre (CLUPM) of Polytechnical University of Madrid (Universidad Politécnica de Madrid). The one dedicated to Remote Laser Welding (RLW) of thin sheets for automotive and other sectors uses a CO2 laser of 3500 W. The second has a high flexibility, is based on a 6-axis ABB robot and a Nd:YAG laser of 3300 W, and is meant for various laser processing methods, including welding. After a short description of each cell, several LW applications experimented at CLUPM and recently implemented in industry are briefly presented: RLW of automotive coated sheets, LW of high strength automotive sheets, LW vs. laser hybrid welding (LHW) of Double Phase steel thin sheets, and LHW of thin sheets of stainless steel and carbon steel (dissimilar joints). The main technological issues overcame and the critical process parameters are pointed out. Conclusions about achievements and trends are provided.
Resumo:
The increasing demands in MEMS fabrication are leading to new requirements in production technology. Especially the packaging and assembly require high accuracy in positioning and high reproducibility in combination with low production costs. Conventional assembly technology and mechanical adjustment methods are time consuming and expensive. Each component of the system has to be positioned and fixed. Also adjustment of the parts after joining requires additional mechanical devices that need to be accessible after joining.
Resumo:
Outline: • Introduction • Numerical model SHOCKLAS© • Single LSP pulses • Overlapped LSP pulses • Discussion and Outlook
Resumo:
The increasing demands in MEMS fabrication are leading to new requirements in production technology. Especially the packaging and assembly require high accuracy in positioning and high reproducibility in combination with low production costs. Conventional assembly technology and mechanical adjustment methods are time consuming and expensive. Each component of the system has to be positioned and fixed. Also adjustment of the parts after joining requires additional mechanical devices that need to be accessible after joining. Accurate positioning of smallest components represents an up-to-date key assignment in micro-manufacturing. It has proven to be more time and cost efficient to initially assemble the components with widened tolerances before precisely micro-adjusting them in a second step.