16 resultados para Self compacting concrete
em Universidad Politécnica de Madrid
Resumo:
The paper presents the results of the tests of a self-compacting concrete made with fines which include Portland cement and three fillers: hornfels, limestone and metakaolin, in a weight proportion between 23% and 45% of the admixtures. The first mix proportions were designed with a high proportion of Portland cement (720-750kg/m3), and are compared to those having a smaller content of cement and more fillers. The results obtained show that the limestone filler percentage should be higher than the hornfels one, and both of them significantly higher than that of the metakaolin so as to facilitate the fluidity and self-compactability. AIso, the higher proportion of fillers causes a rounded porosity in the mixing which has a bearing on better compressive strength results.
Resumo:
High performance materials are needed for the reconstruction of such a singular building as a cathedral, since in addition to special mechanical properties, high self compact ability, high durability and high surface quality, are specified. Because of the project’s specifications, the use of polypropylene fiber-reinforced, self-compacting concrete was selected by the engineering office. The low quality of local materials and the lack of experience in applying macro polypropylene fiber for structural reinforcement with these components materials required the development of a pretesting program. To optimize the mix design, performance was evaluated following technical, economical and constructability criteria. Since the addition of fibers reduces concrete self-compactability, many trials were run to determine the optimal mix proportions. The variables introduced were paste volume; the aggregate skeleton of two or three fractions plus limestone filler; fiber type and dosage. Two mix designs were selected from the preliminary results. The first one was used as reference for self-compactability and mechanical properties. The second one was an optimized mix with a reduction in cement content of 20 kg/m3and fiber dosage of 1 kg/m3. For these mix designs, extended testing was carried out to measure the compression and flexural strength, modulus of elasticity, toughness, and water permeability resistance
Resumo:
This study includes an analysis of the applicability of current models used for estimating the mechanical properties of conventional concrete to self-compacting concrete. The mechanical properties evaluated are: modulus of elasticity, tensile strength, and modulus of rupture. An extensive database which included the dosifications and the mechanical properties of 627 mixtures from 138 different references, was used. The models considered are: ACI, EC-2, NZS 3101:2006 (New Zealand code) and the CSA A23.3-04 (Canadian code). The precision in estimating the modulus of elasticity and tensile strength is acceptable for all models; however, all models are less precise in estimating the modulus of rupture.
Resumo:
El hormigón autocompactante (HAC) es una nueva tipología de hormigón o material compuesto base cemento que se caracteriza por ser capaz de fluir en el interior del encofrado o molde, llenándolo de forma natural, pasando entre las barras de armadura y consolidándose únicamente bajo la acción de su peso propio, sin ayuda de medios de compactación externos, y sin que se produzca segregación de sus componentes. Debido a sus propiedades frescas (capacidad de relleno, capacidad de paso, y resistencia a la segregación), el HAC contribuye de forma significativa a mejorar la calidad de las estructuras así como a abrir nuevos campos de aplicación del hormigón. Por otra parte, la utilidad del hormigón reforzado con fibras de acero (HRFA) es hoy en día incuestionable debido a la mejora significativa de sus propiedades mecánicas tales como resistencia a tracción, tenacidad, resistencia al impacto o su capacidad para absorber energía. Comparado con el HRFA, el hormigón autocompactante reforzado con fibras de acero (HACRFA) presenta como ventaja una mayor fluidez y cohesión ofreciendo, además de unas buenas propiedades mecánicas, importantes ventajas en relación con su puesta en obra. El objetivo global de esta tesis doctoral es el desarrollo de nuevas soluciones estructurales utilizando materiales compuestos base cemento autocompactantes reforzados con fibras de acero. La tesis presenta una nueva forma de resolver el problema basándose en el concepto de los materiales gradiente funcionales (MGF) o materiales con función gradiente (MFG) con el fin de distribuir de forma eficiente las fibras en la sección estructural. Para ello, parte del HAC se sustituye por HACRFA formando capas que presentan una transición gradual entre las mismas con el fin de obtener secciones robustas y exentas de tensiones entre capas con el fin de aplicar el concepto “MGF-laminados” a elementos estructurales tales como vigas, columnas, losas, etc. El proceso incluye asimismo el propio método de fabricación que, basado en la tecnología HAC, permite el desarrollo de interfases delgadas y robustas entre capas (1-3 mm) gracias a las propiedades reológicas del material. Para alcanzar dichos objetivos se ha llevado a cabo un amplio programa experimental cuyas etapas principales son las siguientes: • Definir y desarrollar un método de diseño que permita caracterizar de forma adecuada las propiedades mecánicas de la “interfase”. Esta primera fase experimental incluye: o las consideraciones generales del propio método de fabricación basado en el concepto de fabricación de materiales gradiente funcionales denominado “reología y gravedad”, o las consideraciones específicas del método de caracterización, o la caracterización de la “interfase”. • Estudiar el comportamiento mecánico sobre elementos estructurales, utilizando distintas configuraciones de MGF-laminado frente a acciones tanto estáticas como dinámicas con el fin de comprobar la viabilidad del material para ser usado en elementos estructurales tales como vigas, placas, pilares, etc. Los resultados indican la viabilidad de la metodología de fabricación adoptada, así como, las ventajas tanto estructurales como en reducción de costes de las soluciones laminadas propuestas. Es importante destacar la mejora en términos de resistencia a flexión, compresión o impacto del hormigón autocompactante gradiente funcional en comparación con soluciones de HACRFA monolíticos inclusos con un volumen neto de fibras (Vf) doble o superior. Self-compacting concrete (SCC) is an important advance in the concrete technology in the last decades. It is a new type of high performance concrete with the ability of flowing under its own weight and without the need of vibrations. Due to its specific fresh or rheological properties, such as filling ability, passing ability and segregation resistance, SCC may contribute to a significant improvement of the quality of concrete structures and open up new field for the application of concrete. On the other hand, the usefulness of steel fibre-reinforced concrete (SFRC) in civil engineering applications is unquestionable. SFRC can improve significantly the hardened mechanical properties such as tensile strength, impact resistance, toughness and energy absorption capacity. Compared to SFRC, self-compacting steel fibre-reinforced concrete (SCSFRC) is a relatively new type of concrete with high flowability and good cohesiveness. SCSFRC offers very attractive economical and technical benefits thanks to SCC rheological properties, which can be further extended, when combined with SFRC for improving their mechanical characteristics. However, for the different concrete structural elements, a single concrete mix is selected without an attempt to adapt the diverse fibre-reinforced concretes to the stress-strain sectional properly. This thesis focused on the development of high performance cement-based structural composites made of SCC with and without steel fibres, and their applications for enhanced mechanical properties in front of different types of load and pattern configurations. It presents a new direction for tackling the mechanical problem. The approach adopted is based on the concept of functionally graded cementitious composite (FGCC) where part of the plain SCC is strategically replaced by SCSFRC in order to obtain laminated functionally graded self-compacting cementitious composites, laminated-FGSCC, in single structural elements as beams, columns, slabs, etc. The approach also involves a most suitable casting method, which uses SCC technology to eliminate the potential sharp interlayer while easily forming a robust and regular reproducible graded interlayer of 1-3 mm by controlling the rheology of the mixes and using gravity at the same time to encourage the use of the powerful concept for designing more performance suitable and cost-efficient structural systems. To reach the challenging aim, a wide experimental programme has been carried out involving two main steps: • The definition and development of a novel methodology designed for the characterization of the main parameter associated to the interface- or laminated-FGSCC solutions: the graded interlayer. Work of this first part includes: o the design considerations of the innovative (in the field of concrete) production method based on “rheology and gravity” for producing FG-SCSFRC or as named in the thesis FGSCC, casting process and elements, o the design of a specific testing methodology, o the characterization of the interface-FGSCC by using the so designed testing methodology. • The characterization of the different medium size FGSCC samples under different static and dynamic loads patterns for exploring their possibilities to be used for structural elements as beams, columns, slabs, etc. The results revealed the efficiency of the manufacturing methodology, which allow creating robust structural sections, as well as the feasibility and cost effectiveness of the proposed FGSCC solutions for different structural uses. It is noticeable to say the improvement in terms of flexural, compressive or impact loads’ responses of the different FGSCC in front of equal strength class SCSFRC bulk elements with at least the double of overall net fibre volume fraction (Vf).
Resumo:
The objective of this study is to analyze the applicability of current models used for estimating the mechanical properties of conventional concrete to self-consolidating concrete (SCC). The mechanical properties evaluated are modulus of elasticity, tensile strength,and modulus of rupture. As part of the study, it was necessary to build an extensive database that included the proportions and mechanical properties of 627 mixtures from 138 different references. The same models that are currently used for calculating the mechanical properties of conventional concrete were applied to SCC to evaluate their applicability to this type of concrete. The models considered are the ACI 318, ACI 363R, and EC2. These are the most commonly used models worldwide. In the first part of the study, the overall behavior and adaptability of the different models to SCC is evaluated. The specific characterization parameters for each concrete mixture are used to calculate the various mechanical properties applying the different estimation models. The second part of the analysis consists of comparing the experimental results of all the mixtures included in the database with the estimated results to evaluate the applicability of these models to SCC. Various statistical procedures, such as regression analysis and residual analysis, are used to compare the predicted and measured properties. It terms of general applicability, the evaluated models are suitable for estimating the modulus of elasticity, tensile strength, and modulus of rupture of SCC. These models have a rather low sensitivity, however, and adjust well only to mean values. This is because the models use the compressive strength as the main variable to characterize the concrete and do not consider other variables that affect these properties.
Resumo:
Over the past few years, polyolefin fiber reinforced self-compacting concrete has shown high performance in both fresh and hardened state. Its fracture behavior for small deformations could be enhanced with a small amount of steel-hooked fibers, obtaining a hybrid fiber-reinforced concrete well suited for structural use. Four types of conventional fiber-reinforced concrete with steel and polyolefin fibers were produced on the basis of the same self-compacting concrete also manufactured as reference. These concrete mixtures were manufactured separately with the same fiber contents being subsequently used for two more hybrid mixtures. Fracture properties, in addition to fresh and mechanical properties, were assessed. The research showed both synergies (with the two types of fibers working together in the fracture processes) and an improvement of the orientation and distribution of the fibers on the fracture surface
Resumo:
La presente Tesis proporciona una gran cantidad de información con respecto al uso de un nuevo y avanzado material polimérico (con base de poliolefina) especialmente adecuada para ser usada en forma de fibras como adición en el hormigón. Se han empleado fibras de aproximadamente 1 mm de diámetro, longitudes entre 48 y 60 mm y una superficie corrugada. Las prometedoras propiedades de este material (baja densidad, bajo coste, buen comportamiento resistente y gran estabilidad química) justifican el interés en desarrollar el esfuerzo de investigación requerido para demostrar las ventajas de su uso en aplicaciones prácticas. La mayor parte de la investigación se ha realizado usando hormigón autocompactante como matriz, ya que este material es óptimo para el relleno de los encofrados del hormigón, aunque también se ha empleado hormigón normal vibrado con el fin de comparar algunas propiedades. Además, el importante desarrollo del hormigón reforzado con fibras en los últimos años, tanto en investigación como en aplicaciones prácticas, también es muestra del gran interés que los resultados y consideraciones de diseño que esta Tesis pueden tener. El material compuesto resultante, Hormigón Reforzado con Fibras de Poliolefina (HRFP o PFRC por sus siglas inglesas) ha sido exhaustivamente ensayado y estudiado en muchos aspectos. Los resultados permiten establecer cómo conseguidos los objetivos buscados: -Se han cuantificado las propiedades mecánicas del PFRC con el fin de demostrar su buen comportamiento en la fase fisurada de elementos estructurales sometidos a tensiones de tracción. -Contrastar los resultados obtenidos con las bases propuestas en la normativa existente y evaluar las posibilidades para el uso del PFRC con fin estructural para sustituir el armado tradicional con barras de acero corrugado para determinadas aplicaciones. -Se han desarrollado herramientas de cálculo con el fin de evaluar la capacidad del PFRC para sustituir al hormigón armado con las barras habituales de acero. -En base a la gran cantidad de ensayos experimentales y a alguna aplicación real en la construcción, se han podido establecer recomendaciones y consejos de diseño para que elementos de este material puedan ser proyectados y construidos con total fiabilidad. Se presentan, además, resultados prometedores en una nueva línea de trabajo en el campo del hormigón reforzado con fibras combinando dos tipologías de fibras. Se combinaron fibras de poliolefina con fibras de acero como refuerzo del mismo hormigón autocompactante detectándose sinergias que podrían ser la base del uso futuro de esta tecnología de hormigón. This thesis provides a significant amount of information on the use of a new advanced polymer (polyolefin-based) especially suitable in the form of fibres to be added to concrete. At the time of writing, there is a noteworthy lack of research and knowledge about use as a randomly distributed element to reinforce concrete. Fibres with an approximate 1 mm diameter, length of 48-60 mm, an embossed surface and improved mechanical properties are employed. The promising properties of the polyolefin material (low density, inexpensive, and with good strength behaviour and high chemical stability) justify the research effort involved and demonstrate the advantages for practical purposes. While most of the research has used self-compacting concrete, given that this type of matrix material is optimum in filling the concrete formwork, for comparison purposes standard vibration compacted mixes have also been used. In addition, the interest in fibre-reinforced concrete technology, in both research and application, support the significant interest in the results and considerations provided by the thesis. The resulting composite material, polyolefin fibre reinforced concrete (PFRC) has been extensively tested and studied. The results have allowed the following objectives to be met: -Assessment of the mechanical properties of PFRC in order to demonstrate the good performance in the post-cracking strength for structural elements subjected to tensile stresses. -- Assessment of the results in contrast with the existing structural codes, regulations and test methods. The evaluation of the potential of PFRC to meet the requirements and replace traditional steel-bar reinforcement applications. -Development of numerical tools designed to evaluate the capability of PFRC to substitute, either partially or totally, standard steel reinforcing bars either alone or in conjunction with steel fibres. -Provision, based on the large amount of experimental work and real applications, of a series of guidelines and recommendations for the practical and reliable design and use of PFRC. Furthermore, the thesis also reports promising results about an innovative line in the field of fibre-reinforced concrete: the design of a fibre cocktail to reinforce the concrete by using two types of fibres simultaneously. Polyolefin fibres were combined with steel fibres in self-compacting concrete, identifying synergies that could serve as the base in the future use of fibre-reinforced concrete technology.
Resumo:
A través de los años las estructuras de hormigón armado han ido aumentando su cuota de mercado, sustituyendo a las estructuras de fábrica de piedra o ladrillo y restándole participación a las estructuras metálicas. Uno de los primeros problemas que surgieron al ejecutar las estructuras de hormigón armado, era cómo conectar una fase de una estructura de este tipo a una fase posterior o a una modificación posterior. Hasta los años 80-90 las conexiones de una fase de una estructura de hormigón armado, con otra posterior se hacían dejando en la primera fase placas de acero con garrotas embebidas en el hormigón fresco o barras grifadas recubiertas de poliestireno expandido. Una vez endurecido el hormigón se podían conectar nuevas barras, para la siguiente fase mediante soldadura a la placa de la superficie o enderezando las barras grifadas, para embeberlas en el hormigón fresco de la fase siguiente. Estos sistemas requerían conocer la existencia y alcance de la fase posterior antes de hormigonar la fase previa. Además requerían un replanteo muy exacto y complejo de los elementos de conexión. Otro problema existente en las estructuras de hormigón era la adherencia de un hormigón fresco a un hormigón endurecido previamente, ya que la superficie de contacto de ambos hormigones suponía un punto débil, con una adherencia baja. A partir de los años 80, la industria química de la construcción experimentó un gran avance en el desarrollo de productos capaces de generar una buena adherencia sobre el hormigón endurecido. Este avance tecnológico tenía aplicación tanto en la adherencia del hormigón fresco sobre el hormigón endurecido, como en la adherencia de barras post-instaladas en agujeros de hormigón endurecido. Este sistema se denominó “anclajes adherentes de barras de acero en hormigón endurecido”. La forma genérica de ejecutarlos es hacer una perforación cilíndrica en el soporte de hormigón, con una herramienta especifica como un taladro, limpiar la perforación, llenarla del material adherente y finalmente introducir la barra de acero. Los anclajes adherentes se dividen en anclajes cementosos y anclajes químicos, siendo estos últimos los más habituales, fiables, resistentes y fáciles de ejecutar. El uso del anclaje adherente de barras de acero en hormigón endurecido se ha extendido por todo el espectro productivo, siendo muy habitual tanto en construcción de obras de hormigón armado de obra civil y edificación, como en obras industriales, instalaciones o fijación de elementos. La ejecución de un anclaje de una barra de acero en hormigón endurecido depende de numerosas variables, que en su conjunto, o de forma aislada pueden afectar de forma notable a la resistencia del anclaje. Nos referimos a variables de los anclajes, que a menudo no se consideran tales como la dirección de la perforación, la máquina de perforación y el útil de perforación utilizado, la diferencia de diámetros entre el diámetro del taladro y la barra, el tipo de material de anclaje, la limpieza del taladro, la humedad del soporte, la altura del taladro, etc. La utilización en los últimos años de los hormigones Autocompactables, añade una variable adicional, que hasta ahora apenas ha sido estudiada. En línea con lo apuntado, la presente tesis doctoral tiene como objetivo principal el estudio de las condiciones de ejecución en la resistencia de los anclajes en hormigón convencional y autocompactable. Esta investigación se centra principalmente en la evaluación de la influencia de una serie de variables sobre la resistencia de los anclajes, tanto en hormigón convencional como en un hormigón autocompactable. Para este estudio ha sido necesaria la fabricación de dos soportes de hormigón sobre los cuales desarrollar los ensayos. Uno de los bloques se ha fabricado con hormigón convencional y el otro con hormigón autocompactable. En cada pieza de hormigón se han realizado 174 anclajes con barras de acero, variando los parámetros a estudiar, para obtener resultados de todas las variables consideradas. Los ensayos a realizar en ambos bloques son exactamente iguales, para poder comparar la diferencia entre un anclaje en un soporte de hormigón con vibrado convencional (HVC) y un hormigón autocompactante (HAC). De cada tipo de ensayo deseado se harán dos repeticiones en la misma pieza. El ensayo de arrancamiento de las barras se realizara con un gato hidráulico hueco, con un sistema de instrumentación de lectura y registro de datos en tiempo real. El análisis de los resultados, realizado con una potente herramienta estadística, ha permitido determinar y evaluar numéricamente la influencia de los variables consideradas en la resistencia de los anclajes realizados. Así mismo ha permitido diferenciar los resultados obtenidos en los hormigones convencionales y autocompactantes, tanto desde el punto de vista de la resistencia mecánica, como de las deformaciones sufridas en el arrancamiento. Se define la resistencia mecánica de un anclaje, como la fuerza desarrollada en la dirección de la barra, para hacer su arrancamiento del soporte. De la misma forma se considera desplazamiento, a la separación entre un punto fijo de la barra y otro del soporte, en la dirección de la barra. Dichos puntos se determinan cuando se ha terminado el anclaje, en la intersección de la superficie plana del soporte, con la barra. Las conclusiones obtenidas han permitido establecer qué variables afectan a la ejecución de los anclajes y en qué cuantía lo hacen, así como determinar la diferencia entre los anclajes en hormigón vibrado convencional y hormigón autocompactante, con resultados muy interesantes, que permiten valorar la influencia de dichas variables. Dentro de las conclusiones podemos destacar tres grupos, que denominaremos como de alta influencia, baja influencia y sin influencia. En todos los casos hay que hacer el estudio en términos de carga y de desplazamiento. Podemos considerar como de alta influencia, en términos de carga las variables de máquina de perforación y el material de anclaje. En términos de desplazamiento podemos considerar de alta influencia además de la máquina de perforación y el material de anclaje, el diámetro del taladro, así como la limpieza y humedad del soporte. Podemos considerar de baja influencia, en términos de carga las variables de tipo de hormigón, dirección de perforación, limpieza y humedad del soporte. En términos de desplazamiento podemos considerar de baja influencia el tipo de hormigón y la dirección de perforación. Podemos considerar en el apartado de “sin influencia”, en términos de carga las variables de diámetro de perforación y altura del taladro. En términos de desplazamiento podemos considerar como “sin influencia” la variable de altura del taladro. Podemos afirmar que las diferencias entre los valores de carga aumentan de forma muy importante en términos de desplazamiento. ABSTRACT Over the years the concrete structures have been increasing their market share, replacing the masonry structures of stone or brick and subtracting as well the participation of the metallic structures. One of the first problems encountered in the implementing of the reinforced concrete structures was connecting a phase structure of this type at a later stage or a subsequent amendment. Until the 80s and 90s the connections of one phase of a reinforced concrete structure with a subsequent first phase were done by leaving the steel plates embedded in the fresh concrete using hooks or bent bars coated with expanded polystyrene. Once the concrete had hardened new bars could be connected to the next stage by welding them to the surface plate or by straightening the bent bars to embed them in the fresh concrete of the next phase. These systems required a previous knowledge of the existence and scope of the subsequent phase before concreting the previous one. They also required a very precise and complex rethinking of the connecting elements. Another existing problem in the concrete structures was the adhesion of a fresh concrete to a previously hardened concrete, since the contact surface of both concretes leaded to a weak point with low adherence. Since the 80s, the chemicals construction industry experienced a breakthrough in the development of products that generate a good grip on the concrete. This technological advance had its application both in the grip on one hardened fresh concrete and in the adhesion of bar post-installed in holes of hardened concrete. This system was termed as adherent anchors of steel bars in hardened concrete. The generic way of executing this system is by firstly drilling a cylindrical hole in the concrete support using a specific tool such as a drill. Then, cleaning the bore and filling it with bonding material to lastly, introduce the steel bar. These adherent anchors are divided into cement and chemical anchors, the latter being the most common, reliable, durable and easy to run. The use of adhesive anchor of steel bars in hardened concrete has spread across the production spectrum turning itself into a very common solution in both construction of reinforced concrete civil engineering and construction, and industrial works, installations and fixing elements as well. The execution of an anchor of a steel bar in hardened concrete depends on numerous variables which together or as a single solution may significantly affect the strength of the anchor. We are referring to variables of anchors which are often not considered, such as the diameter difference between the rod and the bore, the drilling system, cleansing of the drill, type of anchor material, the moisture of the substrate, the direction of the drill, the drill’s height, etc. During recent years, the emergence of self-compacting concrete adds an additional variable which has hardly been studied so far. According to mentioned this thesis aims to study the main performance conditions in the resistance of conventional and self-compacting concrete anchors. This research is primarily focused on the evaluation of the influence of several variables on the strength of the anchoring, both in conventional concrete and self-compacting concrete. In order to complete this study it has been required the manufacture of two concrete supports on which to develop the tests. One of the blocks has been manufactured with conventional concrete and the other with self-compacting concrete. A total of 174 steel bar anchors have been made in each one of the concrete pieces varying the studied parameters in order to obtain results for all variables considered. The tests to be performed on both blocks are exactly the same in order to compare the difference between an anchor on a stand with vibrated concrete (HVC) and a self-compacting concrete (SCC). Each type of test required two repetitions in the same piece. The pulling test of the bars was made with a hollow jack and with an instrumentation system for reading and recording data in real time. The use of a powerful statistical tool in the analysis of the results allowed to numerically determine and evaluate the influence of the variables considered in the resistance of the anchors made. It has likewise enabled to differentiate the results obtained in the self-compacting and conventional concretes, from both the outlook of the mechanical strength and the deformations undergone by uprooting. The mechanical strength of an anchor is defined as the strength undergone in a direction of the bar to uproot it from the support. Likewise, the movement is defined as the separation between a fixed point of the bar and a fixed point from the support considering the direction of the bar. These points are only determined once the anchor is finished, with the bar, at the intersection in the flat surface of the support. The conclusions obtained have established which variables affect the execution of the anchors and in what quantity. They have also permitted to determine the difference between the anchors in vibrated concrete and selfcompacting concrete with very interesting results that also allow to assess the influence of these mentioned variables. Three groups are highlighted among the conclusions called high influence, low influence and no influence. In every case is necessary to perform the study in terms of loading and movement. In terms of loading, there are considered as high influence two variables: drilling machinery and anchorage material. In terms of movement, there are considered as high influence the drilling diameter and the cleaning and moisture of the support, besides the drilling machinery and the anchorage material. Variables such as type of concrete, drilling direction and cleaning and moisture of the support are considered of low influence in terms of load. In terms of movement, the type of concrete and the direction of the drilling are considered variables of low influence. Within the no influence section in terms of loading, there are included the diameter of the drilling and the height of the drill. In terms of loading, the height of the drill is considered as a no influence variable. We can affirm that the differences among the loading values increase significantly in terms of movement.
Resumo:
El uso de hormigón autocompactante se ha convertido en algo habitual desde su aparición a finales de la década de los 80 gracias a la reducción de costes de mano de obra, la buena calidad del acabado superficial y su uso en piezas fuertemente armadas. Por otro lado, los hormigones reforzados con fibras aportan una mejora en las propiedades mecánicas que puede permitir la reducción de armados y, en general, mejorar la respuesta del material ante todo tipo de solicitaciones, especialmente de tracción. En este trabajo se ha estudiado el comportamiento mecánico de un hormigón autocompactante con fibras de poliolefina. Se han obtenido resultados de caracterización mecánica y de fractura de un hormigón autocompactante de referencia sin fibras y de tres dosificaciones con fibras desde 3 kg/m³ hasta 6 kg/m³. Estos resultados han proporcionado un notable incremento en los valores de resistencia post-fisuración y de energía de fractura sin perjuicio de sus propiedades autocompactantes en estado fresco. Since the development of the first Self-Compacting Concrete in the late 80’s, its use has become widespread due to the reduction of the labor costs, the good finishing quality and the achieving of the necessary fluidity for congested reinforced pieces. Furthermore, Fiber Reinforced Concrete provides improvements of the mechanical properties which may even permit the reduction of the reinforcement. The mechanical behavior of a Self-Compacting Concrete with polyolefin fibers has been explored in this research. Results for mechanical properties and for fracture and post-cracking toughness have been obtained. The experimental campaign has been performed for a plain Self-Compacting Concrete and for three different fiber dosages from 3 kg/m³ to 6 kg/m³. These results show a significant enhancement of the post-cracking strength and the fracture energy without harming in the concrete self-compacting properties in fresh state.
Resumo:
El presente Trabajo Fin de Máster tiene por objeto principal el estudio de la influencia que tienen las adiciones tanto de Nano-Alúmina como de Nano-Sílice en el Hormigón Autocompactante (HAC). Para ello se realizará una comparativa de ensayos con un hormigón patrón cuya publicación versa en el artículo de referencia “Construction and Building Materials 55 (2014) 274–288 (On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self compacting concrete)”, y con idéntica dosificación que el del presente Trabajo, pero con presencia de nano-adiciones, y comparando los ensayos de resistencia a compresión simple, módulo de elasticidad, resistencia a tracción indirecta, resistencia a flexotracción y durabilidad (índice de penetración de agua). El desarrollo del presente trabajo consta de diferentes capítulos, los cuáles se pueden englobar a grandes rasgos dentro de los siguientes tres grandes puntos: - Se elabora un pequeño estudio del estado del conocimiento, referente a hormigones autocompactantes, describiendo su elaboración convencional del mismo y en particular comentando todas los posibles aditivos y adiciones y en concreto, la descripción específica del objeto de este presente Trabajo Fin de Máster, que son las adiciones de nano-sílice y de nano-alúmina, encontrándose todo lo anterior en la literatura existente y referenciada a lo largo del presente Trabajo. El fin de lo anteriormente descrito, es el de revisar un marco teórico, que nos permitirá introducir el conocimiento de partida del presente Trabajo Fin de Máster, tomándolo a su vez como una metodología que sirva de base para el desarrollo del mismo y para futuras líneas de investigación. - Emprender una campaña experimental de laboratorio que nos permita familiarizarnos con los materiales comprendidos dentro del hormigón a tratar (HAC), pasando por cada uno de sus procedimientos de fabricación y curado, así como también conocer y desarrollar los pertinentes ensayos tanto para su estado fresco como para el estado endurecido. - Finalmente, analizar resultados obtenidos de los diferentes ensayos de laboratorio, comparando los mismos y realizando unas conclusiones y futuras líneas de investigación dentro del campo objeto del presente Trabajo Fin de Máster.
Resumo:
The courthouse at El Ejido has a trapezoid floor plan (47 m × 55/26 m) and comprises two distinct volumes that are structurally connected at the basement level and by the footbridges on the upper storeys. A third trapezoid unit featuring a glazed curtain wall facade cantilevers 8 m off the main facade of the front volume. This facade is a structural diaphragm wall, constituted by nine rows of vertical precast concrete members separated by horizontal cast-in-place, self-compacting concrete chords. The location of the courthouse in a seismic area and the small number of horizontal supports for the facade make this wall potentially vulnerable. The high risk, in particular, during construction required careful planning based on a detailed analysis of the interaction between the structure and the ancillary resources used to build it
Resumo:
The courthouse at El Ejido has a trapezoid floor plan (47 m. x 55 / 26 m.) and comprises two distinct volumes that are structurally connected at basement level and by footbridges on the upper storeys. A third trapezoid unit featuring a glazed curtain wall façade cantilevers 8 m. off the main façade of the front volume. This façade is a structural diaphragm wall, constituted by nine rows of vertical precast concrete members separated by horizontal cast-in-place, self-compacting concrete chords. The location of the courthouse in a seismic area and the short number of horizontal supports for the façade make this wall potentially vulnerable. The particularly high risk during construction called for careful planning based on a detailed analysis of the interaction between the structure and the ancillary resources used to build it
Resumo:
Desde mediados de la década de los 80 se está investigando sobre el hormigón autocompactante. Cada día, su uso en el mundo de la construcción es más común debido a sus numerosas ventajas como su excelente fluidez ya que puede fluir bajo su propio peso y llenar encofrados con formas complicadas y muy armados sin necesidad de compactaciones internas o externas. Por otra parte, la búsqueda de materiales más resistentes y duraderos, ha dado lugar a la incorporación de adiciones en materiales a base de cemento. En las últimas dos décadas, los ensayos con los nanomateriales, ha experimentado un gran aumento. Los resultados hasta ahora obtenidos pueden asumir no sólo un aumento en la resistencia de estos materiales, pero un cambio es su funcionalidad. Estas nanopartículas, concretamente la nanosílice, no sólo mejoran sus propiedades mecánicas y especialmente sus propiedades durables, sino que pueden implicar un cambio sustancial en las condiciones de uso y en su ciclo de vida. Este trabajo tiene como principal objetivo el estudio de las propiedades mecánicas, características microestructurales y durables de un hormigón autocompactante cuando se le agrega como adición nanosílice, microsílice y mezcla binarias de ambas, como adición al cemento. Para ello se han realizado 10 mezclas de hormigón. Se utilizó como referencia un hormigón autocompactante obtenido con cemento, caliza, árido, aditivo modificador de viscosidad Se han fabricado tres hormigones con la misma dosificación pero con diferentes contenidos de nanosílice. 2,5%, 5% y 7,5% Tres dosificaciones con adición de microsílice 2,5%, 5% y 7,5% y las tres restantes con mezclas binarias de nanosílice y microsílice con respectivamente2,5%-2,5%, 5%-2,5% y 2,5%-5%, sobre el peso del cemento. El contenido de superplastificante se modificó para conseguir las características de autocompactabilidad. Para observar los efectos de las adiciones añadidas al hormigón, se realiza una extensa campaña experimental. En ella se evaluaron en primer lugar, las características de autocompactabilidad del material en estado fresco, mediante los ensayos prescritos en la Instrucción Española del hormigón estructural EHE 08. Las propiedades mecánicas fueron evaluadas con ensayos de resistencia a compresión, resistencia a tracción indirecta y módulo de elasticidad. Las características microestructurales fueron analizadas mediante porosimetría por intrusión de mercurio, el análisis termogravimétrico y la microscopía electrónica de barrido. Para el estudio de la capacidad durable de las mezclas se realizaron ensayos de resistividad eléctrica, migración de cloruros, difusión de cloruros, carbonatación acelerada, absorción capilar y resistencia al hielo-deshielo. Los resultados ponen de manifiesto que la acción de las adiciones genera mejoras en las propiedades resistentes del material. Así, la adición de nanosílice proporciona mayores resistencias a compresión que la microsílice, sin embargo las mezclas binarias con bajas proporciones de adición producen mayores resistencias. Por otra parte, se observó mediante la determinación de las relaciones de gel/portlandita, que las mezclas que contienen nanosílice tienen una mayor actividad puzolánica que las que contienen microsílice. En las mezclas binarias se obtuvo como resultado que mientras mayor es el contenido de nanosílice en la mezcla mayor es la actividad puzolánica. Unido a lo anteriormente expuesto, el estudio de la porosidad da como resultado que la adición de nanosílice genera un refinamiento del tamaño de los poros mientras que la adición de microsílice disminuye la cantidad de los mismos sin variar el tamaño de poro medio. Por su parte, en las micrografías, se visualizó la formación de cristales procedentes de la hidratación del cemento. En ellas, se pudo observar, que al adicionar nanosílice, la velocidad de hidratación aumenta al aumentar la formación de monosulfoaluminatos con escasa presencia de etringita. Mientras que en las mezclas con adición de microsílice se observan mayor cantidad de cristales de etringita, lo que confirma que la velocidad de hidratación en estos últimos fue menor. Mediante el estudio de los resultados de las pruebas de durabilidad, se observó que no hay diferencias significativas entre el coeficiente de migración de cloruros y el coeficiente de difusión de cloruros en hormigones con adición de nano o microsílice. Aunque este coeficiente es ligeramente menor en mezclas con adición de microsílice. Sin embargo, en las mezclas binarias de ambas adiciones se obtuvo valores de los coeficientes de difusión o migración de cloruros inferiores a los obtenidos en mezclas con una única adición. Esto se evidencia en los resultados de las pruebas de resistividad eléctrica, de difusión de cloruros y de migración de cloruros. Esto puede ser debido a la suma de los efectos que producen el nano y micro adiciones en la porosidad. El resultado mostró que nanosílice tiene un papel importante en la reducción de los poros y la microsílice disminuye el volumen total de ellos. Esto permite definir la vida útil de estos hormigones a valores muy superiores a los exigidos por la EHE-08, por lo que es posible reducir, de forma notable, el recubrimiento exigido en ambiente de alta agresividad asegurando un buen comportamiento en servicio. Por otra parte, la pérdida de masa debido a los ciclos de congelación-descongelación es significativamente menor en los hormigones que contienen nanosílice que los que contienen microsílice. Este resultado está de acuerdo con el ensayo de absorción capilar. De manera general, se puede concluir que son las mezclas binarias y más concretamente la mezcla con un 5% de nanosílice y 2,5% de microsílice la que presenta los mejores resultados tanto en su comportamiento resistente con en su comportamiento durable. Esto puede ser debido a que en estas mezclas la nanosílice se comporta como un núcleo de activación de las reacciones puzolánicas rodeado de partículas de mayor tamaño. Además, el extraordinario comportamiento durable puede deberse también a la continuidad en la curva granulométrica por la existencia de la microsílice, el filler calizo, el cemento, la arena y la gravilla con tamaños de partículas que garantice mezclas muy compactas que presentan elevadas prestaciones. Since the middle of the decade of the 80 is being investigated about self-consolidating concrete. Every day, its use in the world of construction is more common due to their numerous advantages as its excellent fluidity such that it can flow under its own weight and fill formworks with complicated shapes and congested reinforcement without need for internal or external compactions. Moreover, the search for more resistant and durable materials, has led to the incorporation of additions to cement-based materials. In the last two decades, trials with nanomaterials, has experienced a large increase. The results so far obtained can assume not only an increase in the resistance of these materials but a change is its functionality. These nano particles, particularly the nano silica, not only improve their mechanical properties and especially its durable properties, but that may imply a substantial change in the conditions of use and in their life cycle. This work has as its main objective the study of the mechanical properties, the microstructural characteristics and durability capacity in one self-compacting concrete, when added as addition to cement: nano silica, micro silica o binary mixtures of both. To this effect, 10 concrete mixes have been made. As reference one with a certain amount of cement, limestone filler, viscosity modifying additive and water/binder relation. Furthermore they were manufactured with the same dosage three mix with addition of 2.5%, 5% and 7.5% of nano silica by weight of cement. Other three with 2.5%, 5% and 7.5% of micro silica and the remaining three with binary mixtures of 2.5%-2.5%, 5%-2.5% and 2.5%-5% of silica nano-micro silica respectively, b weight of cement, varying only the amount of superplasticizer to obtain concrete with characteristics of self-compactability. To observe the effects of the additions added to the concrete, an extensive experimental campaign was performed. It assessed, first, the characteristics of self-compactability of fresh material through the tests prescribed in the Spanish Structural Instruction Concrete EHE 08. The mechanical properties were evaluated by compression strength tests, indirect tensile strength and modulus of elasticity. The microstructural properties were analyzed by mercury intrusion porosimetry, thermogravimetric analysis and scanning electron microscopy. To study the durability, were performed electrical resistivity tests, migration and diffusion of chlorides, accelerated carbonation, capillary suction and resistance to freeze-thaw cycles. The results show that the action of the additions generates improvements in the strength properties of the material. Specifically, the addition of nano silica provides greater resistance to compression that the mix with micro silica, however binary mixtures with low addition rates generate higher strengths. Moreover, it was observed by determining relationships gel/portlandite, that the pozzolanic activity in the mixtures with nano silica was higher than in the mixtures with micro silica. In binary mixtures it was found that the highest content of nano silica in the mix is the one with the highest pozzolanic activity. Together with the foregoing, the study of the porosity results in the mixture with addition of nano silica generates a refinement of pore size while adding micro silica decreases the amount thereof without changing the average pore size. On the other hand, in the micrographs, the formation of crystals of cement hydration was visualized. In them, it was observed that by adding nano silica, the speed of hydration increases with increasing formation monosulfoaluminatos with scarce presence of ettringite. While in mixtures with addition of micro silica, ettringite crystals are observed, confirming that the hydration speed was lower in these mixtures. By studying the results of durability testing, it observed that no significant differences between the coefficient of migration of chlorides and coefficient of diffusion of chlorides in concretes with addition of nano or micro silica. Although this coefficient is slightly lower in mixtures with addition of micro silica. However, in binary mixtures of both additions was obtained values of coefficients of difusion o migration of chlorides lower than those obtained in mixtures with one of the additions. This is evidenced by the results of the tests electrical resistivity, diffusion of chlorides and migration of chlorides. This may be due to the sum of the effects that produced the nano and micro additions in the porosity. The result showed that nano silica has an important role in the pores refining and the micro silica decreases the total volume of them. This allows defining the life of these concretes in values to far exceed those required by the EHE-08, making it possible to reduce, significantly, the coating required in highly aggressive environment and to guarantee good behavior in service. Moreover, the mass loss due to freeze-thaw cycles is significantly lower in concretes containing nano silica than those containing micro silica. This result agrees with the capillary absorption test. In general, one can conclude that the binary mixture and more specifically the mixture with 5% of nano silica and 2.5% silica fume is which presents the best results in its durable behavior. This may be because in these mixtures, the nano silica behaves as cores activation of pozzolanic reactions. In addition, the durable extraordinary behavior may also be due to the continuity of the grading curve due to existence of micro silica, limestone filler, cement, sand and gravel with particle sizes that guarantees very compact mixtures which have high performance.
Resumo:
La tesis doctoral “Estudio de hormigón autocompactante con árido reciclado” realizada dentro del programa de doctorado de la Universidad Politécnica de Madrid “Máster en técnicas experimentales avanzadas en la ingeniería civil”, investiga la sustitución de áridos gruesos naturales por reciclados en hormigones autocompactantes, para demostrar la posibilidad de utilización de este tipo de árido en la fabricación de hormigones autocompactantes. En cuanto a la línea experimental adoptada, la primera fase corresponde a la caracterización de los cementos y de los áridos naturales y reciclados. En ella se han obtenido las principales características físicas y mecánicas. Una vez validadas las características de todos los materiales y adoptada una dosificación de hormigón autocompactante, se han elaborado cuatro dosificaciones con cuatro grados de incorporación de árido reciclado cada una, y una dosificación con seis grados de incorporación de árido reciclado. Fabricándose un total de 22 tipos de hormigón diferentes, sin contar todas las amasadas iniciales hasta la consecución de un hormigón autocompactante. Las cinco dosificaciones se han dividido en dos grupos para poder analizar con mayor grado de definición las características de cada uno. El primer grupo es aquel que contienen los hormigones con diferentes relaciones a/c, que incluye a la muestra A (a/c=0.55), muestra D (a/c=0.50) y muestra E (a/c=0.45). Por el contrario, el segundo grupo dispone de una relación fija de a/c=0.45 pero diferentes relaciones a/c efectivas, ya que algunas de las muestras disponen de un contenido de agua que permite contrarrestar la mayor absorción del árido reciclado. Estando en este grupo la muestra E (sin agua adicional), la muestra H (con presaturación de los áridos) y la muestra I (con un aporte de agua junto con el agua de amasado. Una vez fabricados los hormigones, se pasa a la segunda fase del estudio correspondiente a la caracterización del hormigón en estado fresco. En esta fase se han llevado a cabo los ensayos de escurrimiento, escurrimiento con anillo japonés, ensayo embudo en V y embudo V a los 5 minutos. Todos estos ensayos permiten evaluar la autocompactabilidad del hormigón según el anejo 17 de la EHE-08. La tercera fase del estudio se centra en la caracterización de los hormigones en estado endurecido, evaluando las características resistentes del hormigón. Para ello, se han realizado los ensayos de resistencia a compresión, a tracción, módulo de elasticidad y coeficiente de Poisson. En la cuarta y última fase, se han analizado la durabilidad de los hormigones, debido que a pesar de ofrecer una adecuada autocompactabilidad y resistencia mecánica, se debe de obtener un hormigón con una correcta durabilidad. Para tal fin, se ha determinado la resistencia a la penetración de agua bajo presión y carbonatación de las probetas. Este último ensayo se ha realizado teniendo en cuenta las condiciones del denominado método natural, con una exposición al ambiente de 90 días y 365 días. Con todos estos resultados se elaboraron las conclusiones derivadas de la investigación, demostrándose la posibilidad de fabricación de hormigones autocompactantes con árido reciclado (HACR) con sustituciones de hasta un 40%, e incluso dependiendo de la relación a/c con sustituciones del 60% y el 80%. ABSTRACT The doctoral thesis titled Analysis of self-compacting concrete with recycled aggregates, has been developed in accordance with the doctoral program: Master degree in advanced experimental techniques in civil engineering, at UPM. It investigates the possibility of replacing natural coarse aggregates with recycled coarse aggregates, in the field of self-compacting concrete. The aim of this dissertation is to analyze the possibility of using recycled coarse aggregates in the manufacture process of self-compacting concretes. Regarding the experimental part, the first phase refers to mechanical and physical characterization of some materials such as cement, natural aggregates and recycled aggregates. Once the characteristics of all materials have been validated and the mixing proportions have been adopted, four different mixes are elaborated by using four dosage rates of recycled aggregates in each one of the samples. Moreover, an additional sample consisting of six different dosages of recycled aggregates is considered. A total number of 22 concrete specimens have been manufactured, without including all the initial kneading samples used to obtain this type of self-compacting concrete. The aforementioned mixes have been divided in two different groups to be able to analyze with more definition. The first group is the one in which the concrete contains different values of the water - cement ratio. It includes the next samples: A (w/c=0.55), D (w/c=0.50) and E (w/c=0.45). The second group has a fixed water -cement ratio, w/c=0.45, but a different effective water - cement ratio, since some of the samples have a water content that enables to offset the major absorption of the recycled aggregates, being in this group the mixing E (without additional water), the mixing H (with saturated recycled aggregate) and the mixing I (with an additional water content to the existing kneading water). Once the concrete samples have been manufactured, the following section deals with the characterization of the concrete in fresh conditions. To accomplish this, several characterization tests are carried out such as the slump-flow test, test slump flow with Japanese ring, test V-funnel and V-funnel to 5 minutes. These tests are used to assess the self-compacting conditions according to the annex 17 of the EHE-08 The third phase of the study focuses on the mechanical characterization, the assessment of the strength properties of the concrete such as compressive strength, tensile strength, modulus of elasticity and Poisson´s ratio. Within the fourth and last phase, durability of the concrete is evaluated. This fact is motivated by the need to obtain not only good self-compacting and mechanical strength properties, but also adequate durability conditions. To accomplish the aforementioned durability, resistance of the samples under certain conditions such as water penetration pressure and carbonation, has been obtained. The latter test has been carried out taking into account the natural method, with an exhibition period to the environment of 90 days and 365 days. Through the results coming from this research work, it has been possible to obtain the main conclusions. It has been demonstrated the possibility to manufacture self-compacting concrete by using recycled aggregates with replacement rates up to 40% or, depending on the w/c ratio, rates of 60% and 80% might be reached.
Resumo:
El presente trabajo de investigación se plantea el estudio del fenómeno de la retracción. El fenómeno de la retracción, al igual que otras propiedades del hormigón, ha sido ampliamente divulgado, pero de un tiempo a esta parte, debido a la aparición de nuevos tipos de hormigones (autocompactantes, de altas resistencias, reciclados, etc.) se ha dejado en un segundo plano. Este segundo plano no significa que haya pasado al olvido, pues en los “nuevos hormigones” se toman los modelos de estimación de los hormigones normales como base para estimar sus propiedades, siendo, por este motivo, muy necesario reflexionar sobre si los modelos que estamos empleando son apropiados o no lo son. Este trabajo pretende, mediante la confección de una base de datos que unifica y amplía la del profesor Bazant, realizar un análisis estadístico de los datos que actualmente tenemos a nuestra disposición, y que conforman un total de 802 ensayos que abarcan desde el fenómeno el entumecimiento hasta la retracción total, pasando por la retracción autógena, con un intervalo de tiempo que abarca desde 1958 hasta 2013. Además, este trabajo realiza una revisión de los siete modelos de cálculo más empleados a la hora de estimar la deformación por retracción, analizándolos minuciosamente y superponiéndolos con los datos reales de la base anteriormente nombrada. Como conclusión, se demuestra que los modelos estudiados estiman razonablemente bien el fenómeno de la retracción, si bien no se llegan a discriminar todas las variables con la precisión esperada, siendo alguno de ellos conservador. En este sentido, se abre la puerta a insistir en un estudio más afinado de la retracción del hormigón, por dos motivos: los actuales modelos sirven de base para la estimación de los anteriormente mencionados nuevos hormigones y porque la introducción y desarrollo de aditivos que sean capaces de disminuir este fenómeno deben asentarse ambos sobre una base más sólida y precisa. Por último, deja la puerta abierta para que otros trabajos de investigación puedan realizarse, bien con la retracción, bien con otras propiedades, como el módulo de deformación, la adquisición de resistencias, etc., pues se adjunta como anexo toda la base completa con más de 20.000 datos que pueden ser de gran utilidad. The main objective of this research study is to evaluate the phenomenon of shrinkage in concrete. The phenomenon of shrinkage, as well as other properties of concrete, has been widely studied, but for a time, and due to the emergence of new types of concrete (self-compacting, high strength, recycled, etc.) it has been left in the background. Having moved to second plane did not mean that it have been abandoned, since in the "new concrete" these properties are calculated using the estimation models developed for conventional concrete, and it is for this reason, why it is important and necessary to reflect whether these models we are using are appropriate or are not. This work seeks to unify and bring up-to-date a database of experimental shrinkage results. The database is based on existing databases, especially on the last version of the database created by Professor Bazant. The database includes a total of 802 experimental results, and include results for total shrinkage, autogenous shrinkage and swelling, and over experimental studies for 1958 to 2013. The database serves as a basis for a complex and detailed statistical analysis of the data. In addition, seven commonly used shrinkage estimation models are presented and evaluated. These models are used for a thoroughly comparison analysis between the estimated results obtained using these models and the actual experimental data included in the unified database. In conclusion, it is shown that the models estimate reasonably well the shrinkage strains, although they fail to discriminate adequately some of the influencing variables, resulting in some of them being too conservative in their estimation. In this sense, the results of this work emphasis the importance and the need of addition research on the shrinkage of concrete. This is especially important considering that the existing models provide a basis for estimating the shrinkage in "new concretes", and that the increase use of shrinkage reducing additives should be based and supported by solid research in this field. Finally, this study includes an extensive and updated database that can serve for further research on shrinkage. The full database, developed as part of this work, which includes more than 20,000 data, is included in the annex of the study.