4 resultados para Seeded region growing

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, Object Based Image Analysis (OBIA) has been accepted as an effective method for processing high spatial resolution multiband images. This image analysis method is an approach that starts with the segmentation of the image. Image segmentation in general is a procedure to partition an image into homogenous groups (segments). In practice, visual interpretation is often used to assess the quality of segmentation and the analysis relies on the experience of an analyst. In an effort to address the issue, in this study, we evaluate several seed selection strategies for an automatic image segmentation methodology based on a seeded region growing-merging approach. In order to evaluate the segmentation quality, segments were subjected to spatial autocorrelation analysis using Moran's I index and intra-segment variance analysis. We apply the algorithm to image segmentation using an aerial multiband image.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La medicina ha evolucionado de forma que las imágenes digitales tienen un papel de gran relevancia para llevar a cabo el diagnóstico de enfermedades. Son muchos y de diversa naturaleza los problemas que pueden presentar el aparato fonador. Un paso previo para la caracterización de imágenes digitales de la laringe es la segmentación de las cuerdas vocales. Hasta el momento se han desarrollado algoritmos que permiten la segmentación de la glotis. El presente proyecto pretende avanzar un paso más en el estudio, procurando asimismo la segmentación de las cuerdas vocales. Para ello, es necesario aprovechar la información de color que ofrecen las imágenes, pues es lo que va a determinar la diferencia entre una región y otra de la imagen. En este proyecto se ha desarrollado un novedoso método de segmentación de imágenes en color estroboscópicas de la laringe basado en el crecimiento de regiones a partir de píxeles-semilla. Debido a los problemas que presentan las imágenes obtenidas por la técnica de la estroboscopia, para conseguir óptimos resultados de la segmentación es necesario someter a las imágenes a un preprocesado, que consiste en la eliminación de altos brillos y aplicación de un filtro de difusión anisotrópica. Tras el preprocesado, comienza el crecimiento de la región a partir de unas semillas que se obtienen previamente. La condición de inclusión de un píxel en la región se basa en un parámetro de tolerancia que se determina de forma adaptativa. Este parámetro comienza teniendo un valor muy bajo y va aumentando de forma recursiva hasta alcanzar una condición de parada. Esta condición se basa en el análisis de la distribución estadística de los píxeles dentro de la región que va creciendo. La última fase del proyecto consiste en la realización de las pruebas necesarias para verificar el funcionamiento del sistema diseñado, obteniéndose buenos resultados en la segmentación de la glotis y resultados esperanzadores para seguir mejorando el sistema para la segmentación de las cuerdas vocales. ABSTRACT Medicine has evolved so that digital images have a very important role to perform disease diagnosis. There are wide variety of problems that can present the vocal apparatus. A preliminary step for characterization of digital images of the larynx is the segmentation of the vocal folds. To date, some algorithms that allow the segmentation of the glottis have been developed. This project aims to go one step further in the study, also seeking the segmentation of the vocal folds. To do this, we must use the color information offered by images, since this is what will determine the difference between different regions in a picture. In this project a novel method of larynx color images segmentation based on region growing from a pixel seed is developed. Due to the problems of the images obtained by the technique of stroboscopy, to achieve optimal results of the segmentation is necessary a preprocessing of the images, which involves the removal of high brightness and applying an anisotropic diffusion filter. After this preprocessing, the growth of the region from previously obtained seeds starts. The condition for inclusion of a pixel in the region is based on a tolerance parameter, which is adaptively determined. It initially has a low value and this is recursively increased until a stop condition is reached. This condition is based on the analysis of the statistical distribution of the pixels within the grown region. The last phase of the project involves the necessary tests to verify the proper working of the designed system, obtaining very good results in the segmentation of the glottis and encouraging results to keep improving the system for the segmentation of the vocal folds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Los pinares de repoblación del Parque Nacional de Sierra Nevada presentan graves problemas ecológicos debido al exceso de densidad y a la falta de actuaciones selvícolas durante las primeras etapas de crecimiento de los árboles plantados. En este trabajo se evalúan los efectos de tratamientos de claras con diferentes intensidades en la estructura, composición y regeneración de especies de frondosas en parcelas experimentales de pino, principalmente de Pinus halepensis L. Para la caracterización de la estructura se ha desarrollado y testado una nueva metodología que permite obtener la posición y diámetro de los pies a partir de fotografías estereoscópicas hemisféricas tomadas con el sistema de medición MU2005-01738, el cual ha sido desarrollado en el INIA. La información obtenida a partir de estas imágenes permitió calcular índices de patrón espacial, diferenciación, diversidad diamétrica y cobertura de las masas forestales. La diversidad de especies y la regeneración se caracterizaron a partir de inventarios florísticos. Los resultados indican que, en el proceso de estimación de variables estructurales de los árboles mediante el análisis de las imágenes tomadas, la identificación de árboles homólogos basado en el método de “region growing” a partir de un punto seleccionado por el usuario, es más precisa que la obtenida mediante clasificación automática de todos los píxeles de la imagen. Por otro lado, los índices obtenidos muestran que los tratamientos con claras juegan un papel clave en la dinámica de la diversidad estructural, aumentando la heterogeneidad espacial y contribuyendo a restablecer la dinámica sucesional y la diversidad de las masas de repoblación estudiadas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Remote sensing information from spaceborne and airborne platforms continues to provide valuable data for different environmental monitoring applications. In this sense, high spatial resolution im-agery is an important source of information for land cover mapping. For the processing of high spa-tial resolution images, the object-based methodology is one of the most commonly used strategies. However, conventional pixel-based methods, which only use spectral information for land cover classification, are inadequate for classifying this type of images. This research presents a method-ology to characterise Mediterranean land covers in high resolution aerial images by means of an object-oriented approach. It uses a self-calibrating multi-band region growing approach optimised by pre-processing the image with a bilateral filtering. The obtained results show promise in terms of both segmentation quality and computational efficiency.