5 resultados para Seed survival
em Universidad Politécnica de Madrid
Resumo:
- Context: Pinus pinea L. presents serious problems of natural regeneration in managed forest of Central Spain. The species exhibits specific traits linked to frugivore activity. Therefore, information on plant–animal interactions may be crucial to understand regeneration failure. - Aims: Determining the spatio-temporal pattern of P. pinea seed predation by Apodemus sylvaticus L. and the factors involved. Exploring the importance of A. sylvaticus L. as a disperser of P. pinea. Identifying other frugivores and their seasonal patterns. - Methods: An intensive 24-month seed predation trial was carried out. The probability of seeds escaping predation was modelled through a zero-inflated binomial mixed model. Experiments on seed dispersal by A. sylvaticus were conducted. Cameras were set up to identify other potential frugivores. - Results: Decreasing rodent population in summer and masting enhances seed survival. Seeds were exploited more rapidly nearby parent trees and shelters. A. sylvaticus dispersal activity was found to be scarce. Corvids marginally preyed upon P. pinea seeds. - Conclusions: Survival of P. pinea seeds is climate-controlled through the timing of the dry period together with masting occurrence. Should germination not take place during the survival period, establishment may be limited. A. sylvaticus mediated dispersal does not modify the seed shadow. Seasonality of corvid activity points to a role of corvids in dispersal.
Resumo:
Natural regeneration is an ecological key-process that makes plant persistence possible and, consequently, it constitutes an essential element of sustainable forest management. In this respect, natural regeneration in even-aged stands of Pinus pinea L. located in the Spanish Northern Plateau has not always been successfully achieved despite over a century of pine nut-based management. As a result, natural regeneration has recently become a major concern for forest managers when we are living a moment of rationalization of investment in silviculture. The present dissertation is addressed to provide answers to forest managers on this topic through the development of an integral regeneration multistage model for P. pinea stands in the region. From this model, recommendations for natural regeneration-based silviculture can be derived under present and future climate scenarios. Also, the model structure makes it possible to detect the likely bottlenecks affecting the process. The integral model consists of five submodels corresponding to each of the subprocesses linking the stages involved in natural regeneration (seed production, seed dispersal, seed germination, seed predation and seedling survival). The outputs of the submodels represent the transitional probabilities between these stages as a function of climatic and stand variables, which in turn are representative of the ecological factors driving regeneration. At subprocess level, the findings of this dissertation should be interpreted as follows. The scheduling of the shelterwood system currently conducted over low density stands leads to situations of dispersal limitation since the initial stages of the regeneration period. Concerning predation, predator activity appears to be only limited by the occurrence of severe summer droughts and masting events, the summer resulting in a favourable period for seed survival. Out of this time interval, predators were found to almost totally deplete seed crops. Given that P. pinea dissemination occurs in summer (i.e. the safe period against predation), the likelihood of a seed to not be destroyed is conditional to germination occurrence prior to the intensification of predator activity. However, the optimal conditions for germination seldom take place, restraining emergence to few days during the fall. Thus, the window to reach the seedling stage is narrow. In addition, the seedling survival submodel predicts extremely high seedling mortality rates and therefore only some individuals from large cohorts will be able to persist. These facts, along with the strong climate-mediated masting habit exhibited by P. pinea, reveal that viii the overall probability of establishment is low. Given this background, current management –low final stand densities resulting from intense thinning and strict felling schedules– conditions the occurrence of enough favourable events to achieve natural regeneration during the current rotation time. Stochastic simulation and optimisation computed through the integral model confirm this circumstance, suggesting that more flexible and progressive regeneration fellings should be conducted. From an ecological standpoint, these results inform a reproductive strategy leading to uneven-aged stand structures, in full accordance with the medium shade-tolerant behaviour of the species. As a final remark, stochastic simulations performed under a climate-change scenario show that regeneration in the species will not be strongly hampered in the future. This resilient behaviour highlights the fundamental ecological role played by P. pinea in demanding areas where other tree species fail to persist.
Resumo:
Esta tesis doctoral pretende profundizar en el conocimiento de la ecología de Ulmus laevis Pallas, especie autóctona en peligro de extinción en la Península Ibérica, con el fin de proponer medidas adecuadas para su conservación. Se ha estudiado la distribución natural de la especie atendiendo a aspectos edáficos. Los resultados muestran que U. laevis presenta menor capacidad de acidificación de la rizosfera, menor actividad de la reductasa férrica y menor homeostasis que U. minor Mill. cuando crecen en sustratos con una disponibilidad de hierro limitada. Estas diferencias ayudan a comprender la distribución de ambas especies en la Península Ibérica: U. laevis se ve restringido a suelos ácidos o moderadamente ácidos, mientras que U. minor es capaz de habitar tanto suelos ácidos como básicos. Se han analizado las propiedades hidráulicas y anatómicas de U. laevis, constatando que sus características son favorables en ambientes con gran disponibilidad hídrica y que se trata del olmo ibérico más vulnerable a la cavitación por estrés hídrico, por lo que la aridificación del clima y la pérdida de los freáticos supone un riesgo para sus poblaciones. Para evaluar la capacidad de recuperación de la especie se han estudiado la diversidad y estructura genética espacial de las dos mayores poblaciones españolas. Los resultados evidencian que estas poblaciones mantienen niveles de diversidad equiparables o ligeramente superiores a los europeos, pese a haber sufrido un cuello de botella prolongado durante las glaciaciones y a las reducciones poblacionales recientes. En la actualidad la endogamia no representa un riesgo para estas poblaciones. También se ha analizado la producción, dispersión y predación de semillas en Valdelatas (Madrid). Los resultados han mostrado que el viento dispersa las sámaras a corta distancia (<30 m) y que los años no veceros las probabilidades de establecimiento de regenerado son bajas. Además, la producción de sámaras vanas puede tratarse de un carácter adaptativo que aumenta la eficiencia biológica de la especie, ya que favorece la supervivencia de las semillas embrionadas disminuyendo sus tasas de predación pre- y post-dispersión. La modificación del hábitat de esta especie como consecuencia de las actividades humanas afecta de manera negativa al establecimiento del regenerado. La conservación de esta especie a largo plazo requiere la recuperación de los niveles freáticos y de regímenes hidrológicos que permitan avenidas, ya que estas crean las condiciones adecuadas para el establecimiento de regenerado al eliminar la vegetación preexistente y depositar barro. ABSTRACT Ulmus laevis Pallas is an endangered species in the Iberian Peninsula. Therefore, in order to be able to propose adequate management guidelines for its conservation, this PhD Thesis intends to advance the knowledge on the species ecology in the region. Firstly, the species natural distribution was studied in relation to soil nature. Results show that U. minor Mill. had a higher root ferric reductase activity and proton extrusion capability than U. laevis, and maintained a better nutrient homeostasis when grown under iron limiting conditions. These differences in root Fe acquisition efficiencies proved helpful to understand the distribution of these species in the Iberian Peninsula, where U. laevis is restricted to acid or moderately acid soils, whereas U. minor can grow both in acid and basic soils. Secondly, we studied Ulmus laevis’ xylem anatomy and hydraulic traits. These proved favourable for growing under high water availability, but highly susceptible to drought-stress cavitation. Therefore, this species is vulnerable to the Iberian Peninsula’s aridification. Spatial genetic structure and diversity were evaluated in two of the biggest U. laevis populations in Spain in order to evaluate their recovery capabilities. These populations maintain similar or slightly higher diversity levels than European populations, despite having undergone an ancestral genetic bottleneck and having suffered recent population size reductions. No inbreeding problems have been detected in these populations. Seed production, dispersal and predation were assessed in Valdelatas’ elm grove (Madrid). Despite U. laevis samaras being winged nuts, wind dispersed them short distances from the mother tree (<30 m). The seed shadow models show that non-mast years provide very few chances for the stand to regenerate due to their low full seed flux. Empty samaras deceive pre- and post-dispersal predators increasing full seed survival probabilities. Therefore, empty fruit production might be an adaptive trait that increases plant fitness. Finally, human-induced changes in water-table levels and river regulation may affect U. laevis seed dispersal and regeneration establishment negatively. The long-term conservation and expansion of this species in the Iberian Peninsula requires the recovery of water-tables and of natural hydrological regimes, as flooding eliminates vegetation, creating open microhabitats and deposits mud, creating the ideal conditions for seedling establishment.
Resumo:
The direct application of existing models for seed germination may often be inadequate in the context of ecology and forestry germination experiments. This is because basic model assumptions are violated and variables available to forest managers are rarely used. In this paper, we present a method which addresses the aforementioned shortcomings. The approach is illustrated through a case study of Pinus pinea L. Our findings will also shed light on the role of germination in the general failure of natural regeneration in managed forests of this species. The presented technique consists of a mixed regression model based on survival analysis. Climate and stand covariates were tested. Data for fitting the model were gathered from a 5-year germination experiment in a mature, managed P. pinea stand in the Northern Plateau of Spain in which two different stand densities can be found. The model predictions proved to be unbiased and highly accurate when compared with the training data. Germination in P. pinea was controlled through thermal variables at stand level. At microsite level, low densities negatively affected the probability of germination. A time-lag in the response was also detected. Overall, the proposed technique provides a reliable alternative to germination modelling in ecology/forestry studies by using accessible/ suitable variables. The P. pinea case study highlights the importance of producing unbiased predictions. In this species, the occurrence and timing of germination suggest a very different regeneration strategy from that understood by forest managers until now, which may explain the high failure rate of natural regeneration in managed stands. In addition, these findings provide valuable information for the management of P. pinea under climate-change conditions.
Resumo:
he size of seeds and the microsite of seed dispersal may affect the early establishment of seedlings through different physiological processes. Here, we examined the effects of seed size and light availability on seedling growth and survival, and whether such effects were mediated by water use efficiency. Acorns of Quercus petraea and the more drought-tolerant Quercus pyrenaica were sowed within and around a tree canopy gap in a sub-Mediterranean forest stand. We monitored seedling emergence and measured predawn leaf water potential (Ψpd), leaf nitrogen per unit area (Na), leaf mass per area, leaf carbon isotope composition (δ13C) and plant growth at the end of the first summer. Survival was measured on the next year. Path analysis revealed a consistent pattern in both species of higher δ13C as Ψpd decreased and higher δ13C as seedlings emerged later in the season, indicating an increase in 13C as the growing season is shorter and drier. There was a direct positive effect of seed size on δ13C in Q. petraea that was absent in Q. pyrenaica. Leaf δ13C had no effect on growth but the probability of surviving until the second year was higher for those seedlings of Q. pyrenaica that had lower δ13C on the first year. In conclusion, leaf δ13C is affected by seed size, seedling emergence time and the availability of light and water, however, leaf δ13C is irrelevant for first year growth, which is directly dependent on the amount of seed reserves.