26 resultados para Scientific expeditions
em Universidad Politécnica de Madrid
Resumo:
Durante la Ilustración, el imperio español alcanzó su máxima amplitud y las instituciones oficiales incrementaron su apoyo a las ciencias. Para defender sus fronteras y ejercer con eficacia el poder político, económico y religioso, la Corona y la Iglesia necesitaban obtener información precisa --incluida la climatológica-- de las posesiones españolas y de los pobladores de éstas. Fueron varios los procedimientos empleados para ello: sistema de cuestionarios y relaciones geográficas, estudios medico-topográficos, visitas e inspecciones oficiales, expediciones político-científicas, correspondencia epistolar, artículos periodísticos, etc. Dichos procedimientos fueron aplicados por redes de informadores cuyas actuaciones se basaban en la división del trabajo, el reparto de colaboradores en diferentes lugares, el uso de códigos de comunicación comprensibles, el envío de los resultados a los superiores jerárquicos y la toma de decisiones por las autoridades competentes. Las redes de información estaban sometidas a dictámenes que normalizaban su creación y continuidad temporal, daban forma a su estructura interna, especificaban sus cometidos y obligaban a cumplir protocolos y plazos. En su seno se idearon planes de investigación integrados en el estudio general de la Tierra, el ser humano y la cultura. El beneficio de las actuaciones de sus miembros se plasmó en cubrir grandes ámbitos geográficos con el consiguiente ahorro de tiempo, esfuerzos y medios. En sus correspondientes contextos, los miembros de las redes efectuaron estudios climatológicos conforme a intereses, imposiciones y circunstancias específicas. Así, los médicos se interesaron por las condiciones climáticas que influían en la salud humana; los funcionarios reales y los ingenieros militares describieron los climas locales y regionales aptos para el fomento y el control político, jurídico y educativo de los habitantes de los territorios hispánicos; los expedicionarios estudiaron las interacciones entre los fenómenos naturales y las influencias de los accidentes geográficos en los climas; los clérigos se interesaron por los aspectos estéticos, apologéticos y contemplativos de los climas; finalmente, en la prensa de la época se publicaron registros meteorológicos periódicos y trabajos climatológicos varios. En definitiva, el saber climatológico en el mundo hispánico ilustrado aportó algunos rasgos esenciales a la climatología en una etapa pre-fundacional de esta disciplina. Dichos rasgos se desarrollaron generalmente en una escala local o regional y se refirieron a los siguientes asuntos: el calor como principal agente de las modificaciones atmosféricas, de la formación de vapor acuoso y de las precipitaciones; la influencia del suelo en el aumento de humedad y calor en el aire; el poder de los vientos para trasladar de un lugar a otro el frío o el calor, el vapor de agua, los fenómenos atmosféricos y los agentes responsables de las enfermedades contagiosas; las propiedades del aire atmosférico y su capacidad para interaccionar con el medio ambiente; la condición estática y repetitiva de los climas, si bien se admitió que dichos fenómenos podían sufrir modificaciones; la corroboración experimental de las diferencias climáticas entre las zonas tropicales y medias del planeta; la refutación de que la naturaleza americana y sus habitantes eran inferiores a los europeos; y la demostración de que los principios rectores de los fenómenos físicos del Viejo y el Nuevo Mundo eran idénticos. Desde el último tercio del siglo XVIII, los documentos producidos por los componentes de las redes de información incluyeron datos meteorológicos. Pero no siempre se emplearon los mismos instrumentos de medida ni se siguieron los mismos protocolos de indagación en idénticas condiciones. Además, y salvo excepciones, los períodos durante los cuales se recabaron datos atmosféricos fueron relativamente cortos, y los expertos no efectuaron las mismas operaciones aritméticas con los parámetros. Por esta razón, y por la orientación utilitaria de los ilustrados hispánicos, el saber climatológico no obtuvo en el período y en el ámbito geográfico considerados resultados teóricos apreciables; en cambio, dio lugar a una gran cantidad de actividades prácticas con aplicaciones a la medicina, la agricultura, la náutica, el fomento, la prevención de riesgos naturales, etc. La principal utilidad de este trabajo consiste en servir de complemento a los procedimientos actualmente en uso en historia de la hidrología y en climatología histórica. ABSTRACT During the Enlightenment, the Spanish Empire achieved its highest length and State institutions increased their support to sciences. In order to defend their frontiers and to exercise political, economical and religious power, the Crown and the Church needed exact information --including the climatologic one-- about its possessions and its habitants. Some of the procedures employed to get that objective were: system of questionnaires and geographic relations, medical-topographic studies, official visits and inspections, political-scientific expeditions, direct mail, journalistic articles, etc. Those procedures were applied by informers´ networks which obtained, manned and transmitted every kind of data about the natural and moral reality of the Hispanic territories; their actions were based on the division of tasks, the distribution of collaborators at several places, the use of understandable communication codes and the sending of results to the hierarchical superiors; after, the competent authorities took decisions. The information networks were subjected to rules witch regulated its creation, temporary continuity, interior structure, objectives, protocols and periods. Their memberships invented plans about the general research of the Earth, the human beings and the culture; and they contributed to get benefits because of covering large geographic frames and economizing time, effort and means. According to their specifics contexts, concerns, impositions and circumstances, the informers performed climatologic tasks. Thus, the physicians were interested in the climatic conditions which affected to human health; the royal officers and military engineers described the most propitious climates to patronage and political, lawful and educative control of inhabitants of Hispanic territories; the participants in politic-scientific expeditions studied the interactions among natural phenomena and the influence of geographic aspects on the climate; the clergymen underlined the esthetic, apologetic and contemplative face of climates; finally, in the newspapers were published a lot of meteorological data and climatologic works. So, the climatologic knowledge in the Hispanic enlightened world added these essential aspects --referred in a local and regional area-- during the pre-foundational epoch of the climatology: the heat as first agent of atmospheric modifications, aqueous vapor and precipitations; the influx of the land in the increment of humidity and heat of the air; the power of the winds to convey the cold, the heat, the aqueous vapor, the atmospheric phenomena and the agents which caused contagious maladies; the properties of the air and its faculty to mediate with the environs; the static and repetitive condition of the climate and its possibility to experience change; the experimental confirmation of climatic varieties between tropical and central areas of the planet; the negation of the inferiority of the American nature and inhabitants; the demonstration about the equality of the rules which conducted physical phenomena in the Old and the New world. Since the last third part of the eighteenth century, the documents produced by the members of the networks included meteorological data. But the informers were not used to employ the same measure instruments and homogeneous protocols completion in the same conditions. Exceptions besides, the times of taking atmospheric data, usually were very short; and the experts did not carry out the same arithmetical operations with parameters. Because of this reason and the utilitarian guidance of the informers, during the Hispanic Enlightenment, it was not possible to obtain theoretic conclusions about climatologic knowledge; but there were a lot of practical activities applied to Medicine, Agriculture, Navigation, patronage, prevention of natural risks, etc. The main utility of this work consist in favoring the present procedures of the History of Hydrology and Historic Climatology.
Resumo:
This paper shows the development of a science-technological knowledge transfer model in Mexico, as a means to boost the limited relations between the scientific and industrial environments. The proposal is based on the analysis of eight organizations (research centers and firms) with varying degrees of skill in the practice of science-technological knowledge transfer, and carried out by the case study approach. The analysis highlights the synergistic use of the organizational and technological capabilities of each organization, as a means to identification of the knowledge transfer mechanisms best suited to enabling the establishment of cooperative processes, and achieve the R&D and innovation activities results.
Resumo:
Technofusion is the scientific&technical installation for fusion research in Spain, based on three pillars: • It is an open facility to European users. • It is a facility with instrumentation not accesible to small research groups. • It is designed to be closely coordiated with the European Fusion Program. With a budget of 80-100 M€ over five years, several top laboratories will be constructed
Resumo:
Virtualized Infrastructures are a promising way for providing flexible and dynamic computing solutions for resourceconsuming tasks. Scientific Workflows are one of these kind of tasks, as they need a large amount of computational resources during certain periods of time. To provide the best infrastructure configuration for a workflow it is necessary to explore as many providers as possible taking into account different criteria like Quality of Service, pricing, response time, network latency, etc. Moreover, each one of these new resources must be tuned to provide the tools and dependencies required by each of the steps of the workflow. Working with different infrastructure providers, either public or private using their own concepts and terms, and with a set of heterogeneous applications requires a framework for integrating all the information about these elements. This work proposes semantic technologies for describing and integrating all the information about the different components of the overall system and a set of policies created by the user. Based on this information a scheduling process will be performed to generate an infrastructure configuration defining the set of virtual machines that must be run and the tools that must be deployed on them.
Resumo:
Provenance plays a major role when understanding and reusing the methods applied in a scientic experiment, as it provides a record of inputs, the processes carried out and the use and generation of intermediate and nal results. In the specic case of in-silico scientic experiments, a large variety of scientic workflow systems (e.g., Wings, Taverna, Galaxy, Vistrails) have been created to support scientists. All of these systems produce some sort of provenance about the executions of the workflows that encode scientic experiments. However, provenance is normally recorded at a very low level of detail, which complicates the understanding of what happened during execution. In this paper we propose an approach to automatically obtain abstractions from low-level provenance data by finding common workflow fragments on workflow execution provenance and relating them to templates. We have tested our approach with a dataset of workflows published by the Wings workflow system. Our results show that by using these kinds of abstractions we can highlight the most common abstract methods used in the executions of a repository, relating different runs and workflow templates with each other.
Resumo:
This paper presents a data-intensive architecture that demonstrates the ability to support applications from a wide range of application domains, and support the different types of users involved in defining, designing and executing data-intensive processing tasks. The prototype architecture is introduced, and the pivotal role of DISPEL as a canonical language is explained. The architecture promotes the exploration and exploitation of distributed and heterogeneous data and spans the complete knowledge discovery process, from data preparation, to analysis, to evaluation and reiteration. The architecture evaluation included large-scale applications from astronomy, cosmology, hydrology, functional genetics, imaging processing and seismology.
Resumo:
Provenance models are crucial for describing experimental results in science. The W3C Provenance Working Group has recently released the PROV family of specifications for provenance on the Web. While provenance focuses on what is executed, it is important in science to publish the general methods that describe scientific processes at a more abstract and general level. In this paper, we propose P-PLAN, an extension of PROV to represent plans that guid-ed the execution and their correspondence to provenance records that describe the execution itself. We motivate and discuss the use of P-PLAN and PROV to publish scientific workflows as Linked Data.
Resumo:
While workflow technology has gained momentum in the last decade as a means for specifying and enacting computational experiments in modern science, reusing and repurposing existing workflows to build new scientific experiments is still a daunting task. This is partly due to the difficulty that scientists experience when attempting to understand existing workflows, which contain several data preparation and adaptation steps in addition to the scientifically significant analysis steps. One way to tackle the understandability problem is through providing abstractions that give a high-level view of activities undertaken within workflows. As a first step towards abstractions, we report in this paper on the results of a manual analysis performed over a set of real-world scientific workflows from Taverna and Wings systems. Our analysis has resulted in a set of scientific workflow motifs that outline i) the kinds of data intensive activities that are observed in workflows (data oriented motifs), and ii) the different manners in which activities are implemented within workflows (workflow oriented motifs). These motifs can be useful to inform workflow designers on the good and bad practices for workflow development, to inform the design of automated tools for the generation of workflow abstractions, etc.
Resumo:
Applications that operate on meshes are very popular in High Performance Computing (HPC) environments. In the past, many techniques have been developed in order to optimize the memory accesses for these datasets. Different loop transformations and domain decompositions are com- monly used for structured meshes. However, unstructured grids are more challenging. The memory accesses, based on the mesh connectivity, do not map well to the usual lin- ear memory model. This work presents a method to improve the memory performance which is suitable for HPC codes that operate on meshes. We develop a method to adjust the sequence in which the data are used inside the algorithm, by means of traversing and sorting the mesh. This sorted mesh can be transferred sequentially to the lower memory levels and allows for minimum data transfer requirements. The method also reduces the lower memory requirements dra- matically: up to 63% of the L1 cache misses are removed in a traditional cache system. We have obtained speedups of up to 2.58 on memory operations as measured in a general- purpose CPU. An improvement is also observed with se- quential access memories, where we have observed reduc- tions of up to 99% in the required low-level memory size.
Resumo:
A two-stage mission to place a spacecraft (SC) below the Jovian radiation belts, using a spinning bare tether with plasma contactors at both ends to provide propulsion and power,is proposed. Capture by Lorentz drag on the tether, at the periapsis of a barely hyperbolic equatorial orbit, is followed by a sequence of orbits at near-constant periapsis, drag finally bringing the SC down to a circular orbit below the halo ring. Although increasing both tether heating and bowing, retrograde motion can substantially reduce accumulated dose as compared with prograde motion, at equal tether-to-SC mass ratio. In the second stage,the tether is cut to a segment one order of magnitude smaller, with a single plasma contactor, making the SC to slowly spiral inward over severalmonths while generating large onboard power, which would allow multiple scientific applications, including in situ study of Jovian grains, auroral sounding of upper atmosphere, and space- and time-resolved observations of surface and subsurface.
Resumo:
Workflow technology continues to play an important role as a means for specifying and enacting computational experiments in modern science. Reusing and re-purposing workflows allow scientists to do new experiments faster, since the workflows capture useful expertise from others. As workflow libraries grow, scientists face the challenge of finding workflows appropriate for their task, understanding what each workflow does, and reusing relevant portions of a given workflow.We believe that workflows would be easier to understand and reuse if high-level views (abstractions) of their activities were available in workflow libraries. As a first step towards obtaining these abstractions, we report in this paper on the results of a manual analysis performed over a set of real-world scientific workflows from Taverna, Wings, Galaxy and Vistrails. Our analysis has resulted in a set of scientific workflow motifs that outline (i) the kinds of data-intensive activities that are observed in workflows (Data-Operation motifs), and (ii) the different manners in which activities are implemented within workflows (Workflow-Oriented motifs). These motifs are helpful to identify the functionality of the steps in a given workflow, to develop best practices for workflow design, and to develop approaches for automated generation of workflow abstractions.
Resumo:
We derive a semi-analytic formulation that permits to study the long-term dynamics of fast-rotating inert tethers around planetary satellites. Since space tethers are extensive bodies they generate non-keplerian gravitational forces which depend solely on their mass geometry and attitude, that can be exploited for controlling science orbits. We conclude that rotating tethers modify the geometry of frozen orbits, allowing for lower eccentricity frozen orbits for a wide range of orbital inclination, where the length of the tether becomes a new parameter that the mission analyst may use to shape frozen orbits to tighter operational constraints.
Resumo:
El químico norteamericano Eugene Garfield es considerado por muchos investigadores como el "santón" de la documentación científica en el mundo. Bajo el prisma de Garfield y a través de publicaciones tan prestigiosas como "Current Contents" o "Science Citation Index", cualquier investigador puede conocer el índice de impacto que ha alcanzado su trabajo en la comunidad científica.
Resumo:
Scientific missions constitute fundamental cornerstones of space agencies such as ESA and NASA. Modern astronomy could not be understood without the data provided by these missions. Scientists need to design very carefully onboard instruments. Payloads have to survive the crucial launch moment and later perform well in the really harsh space environ-ment. It is very important that the instrument conceptual idea can be engineered to sustain all those loads
Resumo:
Reproducibility of published results is a cornerstone in scientific publishing and progress. Therefore, the scientific community has been encouraging authors and editors to publish their contributions in a verifiable and understandable way. Efforts such as the Reproducibility Initiative [1], or the Reproducibility Projects on Biology [2] and Psychology [3] domains, have been defining standards and patterns to assess whether an experimental result is reproducible.