4 resultados para Savonarola, Girolamo, 1452-1498

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesh adaptation based on error estimation has become a key technique to improve th eaccuracy o fcomputational-fluid-dynamics computations. The adjoint-based approach for error estimation is one of the most promising techniques for computational-fluid-dynamics applications. Nevertheless, the level of implementation of this technique in the aeronautical industrial environment is still low because it is a computationally expensive method. In the present investigation, a new mesh refinement method based on estimation of truncation error is presented in the context of finite-volume discretization. The estimation method uses auxiliary coarser meshes to estimate the local truncation error, which can be used for driving an adaptation algorithm. The method is demonstrated in the context of two-dimensional NACA0012 and three-dimensional ONERA M6 wing inviscid flows, and the results are compared against the adjoint-based approach and physical sensors based on features of the flow field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desde hace mucho tiempo, el hombre se ha preocupado por los fenómenos que rigen el movimiento humano. Así Aristóteles (384-322 a. J.C.) poseía conocimientos notables sobre el centro de gravedad, las leyes del movimiento y de las palancas, siendo el primero en describir el complejo proceso de la marcha. A este sabio le siguieron muchos otros: Arquímedes (287-212 a. J.C.)- Ga leno (131-201 a.J.C.) Leonardo Da Vinci (1452-1519), que describió la mecánica del cuerpo en posición erecta, en la marcha y en el salto. Galileo Galilei (1564-1643) proporcionó empuje al estudio de los fenómenos mecánicos en términos matemáticos, creando las bases para la biomecánica. Alfonso Borelli (1608-1679), considerado por algunos autores como el padre de la moderna biomecánica. Aseguraba que los músculos funcionan de acuerdo con principios matemáticos. Nicolas Andry (1658-1742), creador de la ciencia ortopédica. Isaac Newton, que estableció las bases de la dinámica moderna con la enunciación de sus leyes mecánicas todavía hoy vigentes. E.J. Marey (1830-1904), afirmaba que el movimiento es la más importante de las funciones humanas, y describió métodos fotográficos para la investigación biológica. c.w. Braune (1831-1892), y Otto Fischer (1861-1917), describieron un método experimental para determinar el centro de gravedad. Harold Edgerton, inventor del estroboscopio electrónico de aplicación en el análisis fotográfico del movimiento. Gideon Ariel, una de las máximas autoridades en la biomecánica del deporte actual. ••••••• oooOooo ••••••• En lo que respecta al ámbito deportivo, en los últimos años estamos asistiendo a una gran mejora del rendimiento. Esto es debido en gran parte a un mayor apoyo científico en el proceso de entrenamiento, tanto en lo que se refiere a los métodos para desarrollar la condición física, como en lo concerniente a la perfección de la técnica deportiva, es decir, el aprovechamiento más eficaz de las leyes mecánicas que intervienen en el movimiento deportivo. Según P. Rasch y R. Burke, la biomecánica se ocupa de la investigación del movimiento humano por medio de los conceptos de la física clásica y las disciplinas afines en el arte práctico de la ingeniería. Junto con la anatomía, biofísica, bioquímica, fisiología, psicología y cibernética, y estrechamente relacionada con ellas, la biomecánica, conforma las bases de la metodología deportiva. (Hochmuth) Entre los objetivos específicos de la biomecánica está la investigación dirigida a encontrar una técnica deportiva más eficaz. Actualmente, el perfeccionamiento de la técnica se realiza cada vez más apoyándose en los trabajos de análisis biomecánico. Efectivamente, esto tiene su razón de ser, pues hay detalles en el curso del ~~ movimiento que escapan a la simple observación visual por parte del entrenador. Entre dos lanzamientos de distinta longitud, en muchas ocasiones no se pueden percibir ninguna o como mucho sólo pequeñas diferencias. De ahí la necesidad de las investigaciones basadas en el análisis biomecánico, de cuyos resultados obtendrá el entrenador la información que precisa para realizar las modificaciones oportunas en cuanto a la técnica deportiva empleada por su atleta se refiere. Para el análisis biomecánico se considera el cuerpo humano como un conjunto de segmentos que forman un sistema de eslabones sometido a las leyes físicas. Estos segmentos son: la cabeza, el tronco, los brazos, los antebrazos, las manos, los muslos, las piernas y los pies. A través de estos segmentos y articulaciones se transmiten las aceleraciones y desaceleraciones para alcanzar la velocidad deseada en las porciones terminales y en el sistema propioceptivo que tiene su centro en el cerebro. De todo esto podemos deducir la práctica imposibilidad de descubrir un error en el curso del movimiento por la sola observación visual del entrenador por experto que este sea (Zanon). El aspecto biológico de la biomecánica no se conoce tanto como el aspecto mecánico, ya que este campo es mucho más complejo y se necesitan aparatos de medición muy precisos. Entre los objetivos que me he planteado al efectuar este trabajo están los siguientes: - Análisis biomecánico de uno de los mejores lanzadores de martillo de España. - Qué problemas surgen en el análisis biomecánico tridimensional. Cómo llevar a cabo este tipo de investigación con un material elemental, ya que no disponemos de otro. Ofrecer al técnico deportivo los procedimientos matemáticos del cálculo necesarios. En definitiva ofrecer una pequeña ayuda al entrenador, en su búsqueda de soluciones para el perfeccionamiento de la técnica deportiva.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic three-dimensional flows, which are inhomogeneous in two(and periodic in one)or all three spatial directions.After a brief exposition of the theory,some recent advances are reported. First, results are presented on the implementation of a Jacobian-free Newton–Krylov time-stepping method into a standard finite-volume aerodynamic code to obtain global linear instability results in flows of industrial interest. Second, connections are sought between established and more-modern approaches for structure identification in flows, such as proper orthogonal decomposition and Koopman modes analysis (dynamic mode decomposition), and the possibility to connect solutions of the eigenvalue problem obtained by matrix formation or time-stepping with those delivered by dynamic mode decomposition, residual algorithm, and proper orthogonal decomposition analysis is highlighted in the laminar regime; turbulent and three-dimensional flows are identified as open areas for future research. Finally, a new stable very-high-order finite-difference method is implemented for the spatial discretization of the operators describing the spatial biglobal eigenvalue problem, parabolized stability equation three-dimensional analysis, and the triglobal eigenvalue problem; it is shown that, combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En 1947 sólo había un ordenador y los expertos opinaban que se necesitarían como mucho 6 o 7 más para llevar todos los asuntos de Estados Unidos. Hoy, 50 años después, puede haber en el mundo unos 300 millones de ordenadores personales y, según mis estimaciones, más de 10.000 millones de microprocesadores. La velocidad de cálculo de estos microprocesadores, del tamaño de un chip, y cuyo contenido y estructura son solamente visibles mediante un microscopio electrónico, se acerca ya a los 200 millones de instrucciones por segundo.