1 resultado para SUPRACHIASMATIC NUCLEI
em Universidad Politécnica de Madrid
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (24)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (14)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- Boston University Digital Common (5)
- Brock University, Canada (7)
- CaltechTHESIS (35)
- Cambridge University Engineering Department Publications Database (6)
- CentAUR: Central Archive University of Reading - UK (38)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (300)
- Cochin University of Science & Technology (CUSAT), India (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (5)
- Digital Commons @ DU | University of Denver Research (1)
- DigitalCommons@The Texas Medical Center (2)
- Diposit Digital de la UB - Universidade de Barcelona (21)
- Duke University (15)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- eScholarship Repository - University of California (1)
- Helda - Digital Repository of University of Helsinki (18)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (99)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (29)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (7)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (110)
- Queensland University of Technology - ePrints Archive (44)
- Repositório Científico da Universidade de Évora - Portugal (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (42)
- School of Medicine, Washington University, United States (2)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (1)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (17)
- Université de Lausanne, Switzerland (10)
- Université de Montréal (1)
- Université de Montréal, Canada (25)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (5)
Resumo:
In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells). We have tested our algorithm in a real scenario?the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei.