8 resultados para STATISTICAL METHODOLOGY
em Universidad Politécnica de Madrid
Resumo:
El objetivo central de la presente investigación es profundizar la interpretación de los parámetros multifractales en el caso de las series de precipitación. Para ello se aborda, en primer lugar, la objetivación de la selección de la parte lineal de las curvas log-log que se encuentra en la base de los métodos de análisis fractal y multifractal; y, en segundo lugar, la generación de series artificiales de precipitación, con características similares a las reales, que permitan manipular los datos y evaluar la influencia de las modificaciones controladas de las series en los resultados de los parámetros multifractales derivados. En cuanto al problema de la selección de la parte lineal de las curvas log-log se desarrollaron dos métodos: a. Cambio de tendencia, que consiste en analizar el cambio de pendiente de las rectas ajustadas a dos subconjuntos consecutivos de los datos. b. Eliminación de casos, que analiza la mejora en el p-valor asociado al coeficiente de correlación al eliminar secuencialmente los puntos finales de la regresión. Los resultados obtenidos respecto a la regresión lineal establecen las siguientes conclusiones: - La metodología estadística de la regresión muestra la dificultad para encontrar el valor de la pendiente de tramos rectos de curvas en el procedimiento base del análisis fractal, indicando que la toma de decisión de los puntos a considerar redunda en diferencias significativas de las pendientes encontradas. - La utilización conjunta de los dos métodos propuestos ayuda a objetivar la toma de decisión sobre la parte lineal de las familias de curvas en el análisis fractal, pero su utilidad sigue dependiendo del número de datos de que se dispone y de las altas significaciones que se obtienen. En cuanto al significado empírico de los parámetros multifratales de la precipitación, se han generado 19 series de precipitación por medio de un simulador de datos diarios en cascada a partir de estimaciones anuales y mensuales, y en base a estadísticos reales de 4 estaciones meteorológicas españolas localizadas en un gradiente de NW a SE. Para todas las series generadas, se calculan los parámetros multifractales siguiendo la técnica de estimación de la DTM (Double Trace Moments - Momentos de Doble Traza) desarrollado por Lavalle et al. (1993) y se observan las modificaciones producidas. Los resultados obtenidos arrojaron las siguientes conclusiones: - La intermitencia, C1, aumenta al concentrar las precipitaciones en menos días, al hacerla más variable, o al incrementar su concentración en los días de máxima, mientras no se ve afectado por la modificación en la variabilidad del número de días de lluvia. - La multifractalidad, α, se ve incrementada con el número de días de lluvia y la variabilidad de la precipitación, tanto anual como mensual, así como también con la concentración de precipitación en el día de máxima. - La singularidad probable máxima, γs, se ve incrementada con la concentración de la lluvia en el día de precipitación máxima mensual y la variabilidad a nivel anual y mensual. - El grado no- conservativo, H, depende del número de los días de lluvia que aparezcan en la serie y secundariamente de la variabilidad general de la lluvia. - El índice de Hurst generalizado se halla muy ligado a la singularidad probable máxima. ABSTRACT The main objective of this research is to interpret the multifractal parameters in the case of precipitation series from an empirical approach. In order to do so the first proposed task was to objectify the selection of the linear part of the log-log curves that is a fundamental step of the fractal and multifractal analysis methods. A second task was to generate precipitation series, with real like features, which allow evaluating the influence of controlled series modifications on the values of the multifractal parameters estimated. Two methods are developed for selecting the linear part of the log-log curves in the fractal and multifractal analysis: A) Tendency change, which means analyzing the change in slope of the fitted lines to two consecutive subsets of data. B) Point elimination, which analyzes the improvement in the p- value associated to the coefficient of correlation when the final regression points are sequentially eliminated. The results indicate the following conclusions: - Statistical methodology of the regression shows the difficulty of finding the slope value of straight sections of curves in the base procedure of the fractal analysis, pointing that the decision on the points to be considered yield significant differences in slopes values. - The simultaneous use of the two proposed methods helps to objectify the decision about the lineal part of a family of curves in fractal analysis, but its usefulness are still depending on the number of data and the statistical significances obtained. Respect to the empiric meaning of the precipitation multifractal parameters, nineteen precipitation series were generated with a daily precipitation simulator derived from year and month estimations and considering statistics from actual data of four Spanish rain gauges located in a gradient from NW to SE. For all generated series the multifractal parameters were estimated following the technique DTM (Double Trace Moments) developed by Lavalle et al. (1993) and the variations produced considered. The results show the following conclusions: 1. The intermittency, C1, increases when precipitation is concentrating for fewer days, making it more variable, or when increasing its concentration on maximum monthly precipitation days, while it is not affected due to the modification in the variability in the number of days it rained. 2. Multifractility, α, increases with the number of rainy days and the variability of the precipitation, yearly as well as monthly, as well as with the concentration of precipitation on the maximum monthly precipitation day. 3. The maximum probable singularity, γs, increases with the concentration of rain on the day of the maximum monthly precipitation and the variability in yearly and monthly level. 4. The non-conservative degree, H’, depends on the number of rainy days that appear on the series and secondly on the general variability of the rain. 5. The general Hurst index is linked to the maximum probable singularity.
Resumo:
En esta tesis se aborda la detección y el seguimiento automático de vehículos mediante técnicas de visión artificial con una cámara monocular embarcada. Este problema ha suscitado un gran interés por parte de la industria automovilística y de la comunidad científica ya que supone el primer paso en aras de la ayuda a la conducción, la prevención de accidentes y, en última instancia, la conducción automática. A pesar de que se le ha dedicado mucho esfuerzo en los últimos años, de momento no se ha encontrado ninguna solución completamente satisfactoria y por lo tanto continúa siendo un tema de investigación abierto. Los principales problemas que plantean la detección y seguimiento mediante visión artificial son la gran variabilidad entre vehículos, un fondo que cambia dinámicamente debido al movimiento de la cámara, y la necesidad de operar en tiempo real. En este contexto, esta tesis propone un marco unificado para la detección y seguimiento de vehículos que afronta los problemas descritos mediante un enfoque estadístico. El marco se compone de tres grandes bloques, i.e., generación de hipótesis, verificación de hipótesis, y seguimiento de vehículos, que se llevan a cabo de manera secuencial. No obstante, se potencia el intercambio de información entre los diferentes bloques con objeto de obtener el máximo grado posible de adaptación a cambios en el entorno y de reducir el coste computacional. Para abordar la primera tarea de generación de hipótesis, se proponen dos métodos complementarios basados respectivamente en el análisis de la apariencia y la geometría de la escena. Para ello resulta especialmente interesante el uso de un dominio transformado en el que se elimina la perspectiva de la imagen original, puesto que este dominio permite una búsqueda rápida dentro de la imagen y por tanto una generación eficiente de hipótesis de localización de los vehículos. Los candidatos finales se obtienen por medio de un marco colaborativo entre el dominio original y el dominio transformado. Para la verificación de hipótesis se adopta un método de aprendizaje supervisado. Así, se evalúan algunos de los métodos de extracción de características más populares y se proponen nuevos descriptores con arreglo al conocimiento de la apariencia de los vehículos. Para evaluar la efectividad en la tarea de clasificación de estos descriptores, y dado que no existen bases de datos públicas que se adapten al problema descrito, se ha generado una nueva base de datos sobre la que se han realizado pruebas masivas. Finalmente, se presenta una metodología para la fusión de los diferentes clasificadores y se plantea una discusión sobre las combinaciones que ofrecen los mejores resultados. El núcleo del marco propuesto está constituido por un método Bayesiano de seguimiento basado en filtros de partículas. Se plantean contribuciones en los tres elementos fundamentales de estos filtros: el algoritmo de inferencia, el modelo dinámico y el modelo de observación. En concreto, se propone el uso de un método de muestreo basado en MCMC que evita el elevado coste computacional de los filtros de partículas tradicionales y por consiguiente permite que el modelado conjunto de múltiples vehículos sea computacionalmente viable. Por otra parte, el dominio transformado mencionado anteriormente permite la definición de un modelo dinámico de velocidad constante ya que se preserva el movimiento suave de los vehículos en autopistas. Por último, se propone un modelo de observación que integra diferentes características. En particular, además de la apariencia de los vehículos, el modelo tiene en cuenta también toda la información recibida de los bloques de procesamiento previos. El método propuesto se ejecuta en tiempo real en un ordenador de propósito general y da unos resultados sobresalientes en comparación con los métodos tradicionales. ABSTRACT This thesis addresses on-road vehicle detection and tracking with a monocular vision system. This problem has attracted the attention of the automotive industry and the research community as it is the first step for driver assistance and collision avoidance systems and for eventual autonomous driving. Although many effort has been devoted to address it in recent years, no satisfactory solution has yet been devised and thus it is an active research issue. The main challenges for vision-based vehicle detection and tracking are the high variability among vehicles, the dynamically changing background due to camera motion and the real-time processing requirement. In this thesis, a unified approach using statistical methods is presented for vehicle detection and tracking that tackles these issues. The approach is divided into three primary tasks, i.e., vehicle hypothesis generation, hypothesis verification, and vehicle tracking, which are performed sequentially. Nevertheless, the exchange of information between processing blocks is fostered so that the maximum degree of adaptation to changes in the environment can be achieved and the computational cost is alleviated. Two complementary strategies are proposed to address the first task, i.e., hypothesis generation, based respectively on appearance and geometry analysis. To this end, the use of a rectified domain in which the perspective is removed from the original image is especially interesting, as it allows for fast image scanning and coarse hypothesis generation. The final vehicle candidates are produced using a collaborative framework between the original and the rectified domains. A supervised classification strategy is adopted for the verification of the hypothesized vehicle locations. In particular, state-of-the-art methods for feature extraction are evaluated and new descriptors are proposed by exploiting the knowledge on vehicle appearance. Due to the lack of appropriate public databases, a new database is generated and the classification performance of the descriptors is extensively tested on it. Finally, a methodology for the fusion of the different classifiers is presented and the best combinations are discussed. The core of the proposed approach is a Bayesian tracking framework using particle filters. Contributions are made on its three key elements: the inference algorithm, the dynamic model and the observation model. In particular, the use of a Markov chain Monte Carlo method is proposed for sampling, which circumvents the exponential complexity increase of traditional particle filters thus making joint multiple vehicle tracking affordable. On the other hand, the aforementioned rectified domain allows for the definition of a constant-velocity dynamic model since it preserves the smooth motion of vehicles in highways. Finally, a multiple-cue observation model is proposed that not only accounts for vehicle appearance but also integrates the available information from the analysis in the previous blocks. The proposed approach is proven to run near real-time in a general purpose PC and to deliver outstanding results compared to traditional methods.
Resumo:
Pragmatism is the leading motivation of regularization. We can understand regularization as a modification of the maximum-likelihood estimator so that a reasonable answer could be given in an unstable or ill-posed situation. To mention some typical examples, this happens when fitting parametric or non-parametric models with more parameters than data or when estimating large covariance matrices. Regularization is usually used, in addition, to improve the bias-variance tradeoff of an estimation. Then, the definition of regularization is quite general, and, although the introduction of a penalty is probably the most popular type, it is just one out of multiple forms of regularization. In this dissertation, we focus on the applications of regularization for obtaining sparse or parsimonious representations, where only a subset of the inputs is used. A particular form of regularization, L1-regularization, plays a key role for reaching sparsity. Most of the contributions presented here revolve around L1-regularization, although other forms of regularization are explored (also pursuing sparsity in some sense). In addition to present a compact review of L1-regularization and its applications in statistical and machine learning, we devise methodology for regression, supervised classification and structure induction of graphical models. Within the regression paradigm, we focus on kernel smoothing learning, proposing techniques for kernel design that are suitable for high dimensional settings and sparse regression functions. We also present an application of regularized regression techniques for modeling the response of biological neurons. Supervised classification advances deal, on the one hand, with the application of regularization for obtaining a na¨ıve Bayes classifier and, on the other hand, with a novel algorithm for brain-computer interface design that uses group regularization in an efficient manner. Finally, we present a heuristic for inducing structures of Gaussian Bayesian networks using L1-regularization as a filter. El pragmatismo es la principal motivación de la regularización. Podemos entender la regularización como una modificación del estimador de máxima verosimilitud, de tal manera que se pueda dar una respuesta cuando la configuración del problema es inestable. A modo de ejemplo, podemos mencionar el ajuste de modelos paramétricos o no paramétricos cuando hay más parámetros que casos en el conjunto de datos, o la estimación de grandes matrices de covarianzas. Se suele recurrir a la regularización, además, para mejorar el compromiso sesgo-varianza en una estimación. Por tanto, la definición de regularización es muy general y, aunque la introducción de una función de penalización es probablemente el método más popular, éste es sólo uno de entre varias posibilidades. En esta tesis se ha trabajado en aplicaciones de regularización para obtener representaciones dispersas, donde sólo se usa un subconjunto de las entradas. En particular, la regularización L1 juega un papel clave en la búsqueda de dicha dispersión. La mayor parte de las contribuciones presentadas en la tesis giran alrededor de la regularización L1, aunque también se exploran otras formas de regularización (que igualmente persiguen un modelo disperso). Además de presentar una revisión de la regularización L1 y sus aplicaciones en estadística y aprendizaje de máquina, se ha desarrollado metodología para regresión, clasificación supervisada y aprendizaje de estructura en modelos gráficos. Dentro de la regresión, se ha trabajado principalmente en métodos de regresión local, proponiendo técnicas de diseño del kernel que sean adecuadas a configuraciones de alta dimensionalidad y funciones de regresión dispersas. También se presenta una aplicación de las técnicas de regresión regularizada para modelar la respuesta de neuronas reales. Los avances en clasificación supervisada tratan, por una parte, con el uso de regularización para obtener un clasificador naive Bayes y, por otra parte, con el desarrollo de un algoritmo que usa regularización por grupos de una manera eficiente y que se ha aplicado al diseño de interfaces cerebromáquina. Finalmente, se presenta una heurística para inducir la estructura de redes Bayesianas Gaussianas usando regularización L1 a modo de filtro.
Resumo:
Landcover is subject to continuous changes on a wide variety of temporal and spatial scales. Those changes produce significant effects in human and natural activities. Maintaining an updated spatial database with the occurred changes allows a better monitoring of the Earth?s resources and management of the environment. Change detection (CD) techniques using images from different sensors, such as satellite imagery, aerial photographs, etc., have proven to be suitable and secure data sources from which updated information can be extracted efficiently, so that changes can also be inventoried and monitored. In this paper, a multisource CD methodology for multiresolution datasets is applied. First, different change indices are processed, then different thresholding algorithms for change/no_change are applied to these indices in order to better estimate the statistical parameters of these categories, finally the indices are integrated into a change detection multisource fusion process, which allows generating a single CD result from several combination of indices. This methodology has been applied to datasets with different spectral and spatial resolution properties. Then, the obtained results are evaluated by means of a quality control analysis, as well as with complementary graphical representations. The suggested methodology has also been proved efficiently for identifying the change detection index with the higher contribution.
Resumo:
La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.
Resumo:
El autor ha trabajado como parte del equipo de investigación en mediciones de viento en el Centro Nacional de Energías Renovables (CENER), España, en cooperación con la Universidad Politécnica de Madrid y la Universidad Técnica de Dinamarca. El presente reporte recapitula el trabajo de investigación realizado durante los últimos 4.5 años en el estudio de las fuentes de error de los sistemas de medición remota de viento, basados en la tecnología lidar, enfocado al error causado por los efectos del terreno complejo. Este trabajo corresponde a una tarea del paquete de trabajo dedicado al estudio de sistemas remotos de medición de viento, perteneciente al proyecto de intestigación europeo del 7mo programa marco WAUDIT. Adicionalmente, los datos de viento reales han sido obtenidos durante las campañas de medición en terreno llano y terreno complejo, pertenecientes al también proyecto de intestigación europeo del 7mo programa marco SAFEWIND. El principal objetivo de este trabajo de investigación es determinar los efectos del terreno complejo en el error de medición de la velocidad del viento obtenida con los sistemas de medición remota lidar. Con este conocimiento, es posible proponer una metodología de corrección del error de las mediciones del lidar. Esta metodología está basada en la estimación de las variaciones del campo de viento no uniforme dentro del volumen de medición del lidar. Las variaciones promedio del campo de viento son predichas a partir de los resultados de las simulaciones computacionales de viento RANS, realizadas para el parque experimental de Alaiz. La metodología de corrección es verificada con los resultados de las simulaciones RANS y validadas con las mediciones reales adquiridas en la campaña de medición en terreno complejo. Al inicio de este reporte, el marco teórico describiendo el principio de medición de la tecnología lidar utilizada, es presentado con el fin de familiarizar al lector con los principales conceptos a utilizar a lo largo de este trabajo. Posteriormente, el estado del arte es presentado en donde se describe los avances realizados en el desarrollo de la la tecnología lidar aplicados al sector de la energía eólica. En la parte experimental de este trabajo de investigación se ha estudiado los datos adquiridos durante las dos campañas de medición realizadas. Estas campañas has sido realizadas en terreno llano y complejo, con el fin de complementar los conocimiento adquiridos en casa una de ellas y poder comparar los efectos del terreno en las mediciones de viento realizadas con sistemas remotos lidar. La primer campaña experimental se desarrollo en terreno llano, en el parque de ensayos de aerogeneradores H0vs0re, propiedad de DTU Wind Energy (anteriormente Ris0). La segunda campaña experimental se llevó a cabo en el parque de ensayos de aerogeneradores Alaiz, propiedad de CENER. Exactamente los mismos dos equipos lidar fueron utilizados en estas campañas, haciendo de estos experimentos altamente relevantes en el contexto de evaluación del recurso eólico. Un equipo lidar está basado en tecnología de onda continua, mientras que el otro está basado en tecnología de onda pulsada. La velocidad del viento fue medida, además de con los equipos lidar, con anemómetros de cazoletas, veletas y anemómetros verticales, instalados en mástiles meteorológicos. Los sensores del mástil meteorológico son considerados como las mediciones de referencia en el presente estudio. En primera instancia, se han analizado los promedios diez minútales de las medidas de viento. El objetivo es identificar las principales fuentes de error en las mediciones de los equipos lidar causadas por diferentes condiciones atmosféricas y por el flujo no uniforme de viento causado por el terreno complejo. El error del lidar ha sido estudiado como función de varias propiedades estadísticas del viento, como lo son el ángulo vertical de inclinación, la intensidad de turbulencia, la velocidad vertical, la estabilidad atmosférica y las características del terreno. El propósito es usar este conocimiento con el fin de definir criterios de filtrado de datos. Seguidamente, se propone una metodología para corregir el error del lidar causado por el campo de viento no uniforme, producido por la presencia de terreno complejo. Esta metodología está basada en el análisis matemático inicial sobre el proceso de cálculo de la velocidad de viento por los equipos lidar de onda continua. La metodología de corrección propuesta hace uso de las variaciones de viento calculadas a partir de las simulaciones RANS realizadas para el parque experimental de Alaiz. Una ventaja importante que presenta esta metodología es que las propiedades el campo de viento real, presentes en las mediciones instantáneas del lidar de onda continua, puede dar paso a análisis adicionales como parte del trabajo a futuro. Dentro del marco del proyecto, el trabajo diario se realizó en las instalaciones de CENER, con supervisión cercana de la UPM, incluyendo una estancia de 1.5 meses en la universidad. Durante esta estancia, se definió el análisis matemático de las mediciones de viento realizadas por el equipo lidar de onda continua. Adicionalmente, los efectos del campo de viento no uniforme sobre el error de medición del lidar fueron analíticamente definidos, después de asumir algunas simplificaciones. Adicionalmente, durante la etapa inicial de este proyecto se desarrollo una importante trabajo de cooperación con DTU Wind Energy. Gracias a esto, el autor realizó una estancia de 1.5 meses en Dinamarca. Durante esta estancia, el autor realizó una visita a la campaña de medición en terreno llano con el fin de aprender los aspectos básicos del diseño de campañas de medidas experimentales, el estudio del terreno y los alrededores y familiarizarse con la instrumentación del mástil meteorológico, el sistema de adquisición y almacenamiento de datos, así como de el estudio y reporte del análisis de mediciones. ABSTRACT The present report summarizes the research work performed during last 4.5 years of investigation on the sources of lidar bias due to complex terrain. This work corresponds to one task of the remote sensing work package, belonging to the FP7 WAUDIT project. Furthermore, the field data from the wind velocity measurement campaigns of the FP7 SafeWind project have been used in this report. The main objective of this research work is to determine the terrain effects on the lidar bias in the measured wind velocity. With this knowledge, it is possible to propose a lidar bias correction methodology. This methodology is based on an estimation of the wind field variations within the lidar scan volume. The wind field variations are calculated from RANS simulations performed from the Alaiz test site. The methodology is validated against real scale measurements recorded during an eight month measurement campaign at the Alaiz test site. Firstly, the mathematical framework of the lidar sensing principle is introduced and an overview of the state of the art is presented. The experimental part includes the study of two different, but complementary experiments. The first experiment was a measurement campaign performed in flat terrain, at DTU Wind Energy H0vs0re test site, while the second experiment was performed in complex terrain at CENER Alaiz test site. Exactly the same two lidar devices, based on continuous wave and pulsed wave systems, have been used in the two consecutive measurement campaigns, making this a relevant experiment in the context of wind resource assessment. The wind velocity was sensed by the lidars and standard cup anemometry and wind vanes (installed on a met mast). The met mast sensors are considered as the reference wind velocity measurements. The first analysis of the experimental data is dedicated to identify the main sources of lidar bias present in the 10 minute average values. The purpose is to identify the bias magnitude introduced by different atmospheric conditions and by the non-uniform wind flow resultant of the terrain irregularities. The lidar bias as function of several statistical properties of the wind flow like the tilt angle, turbulence intensity, vertical velocity, atmospheric stability and the terrain characteristics have been studied. The aim of this exercise is to use this knowledge in order to define useful lidar bias data filters. Then, a methodology to correct the lidar bias caused by non-uniform wind flow is proposed, based on the initial mathematical analysis of the lidar measurements. The proposed lidar bias correction methodology has been developed focusing on the the continuous wave lidar system. In a last step, the proposed lidar bias correction methodology is validated with the data of the complex terrain measurement campaign. The methodology makes use of the wind field variations obtained from the RANS analysis. The results are presented and discussed. The advantage of this methodology is that the wind field properties at the Alaiz test site can be studied with more detail, based on the instantaneous measurements of the CW lidar. Within the project framework, the daily basis work has been done at CENER, with close guidance and support from the UPM, including an exchange period of 1.5 months. During this exchange period, the mathematical analysis of the lidar sensing of the wind velocity was defined. Furthermore, the effects of non-uniform wind fields on the lidar bias were analytically defined, after making some assumptions for the sake of simplification. Moreover, there has been an important cooperation with DTU Wind Energy, where a secondment period of 1.5 months has been done as well. During the secondment period at DTU Wind Energy, an important introductory learning has taken place. The learned aspects include the design of an experimental measurement campaign in flat terrain, the site assessment study of obstacles and terrain conditions, the data acquisition and processing, as well as the study and reporting of the measurement analysis.
Resumo:
Air pollution abatement policies must be based on quantitative information on current and future emissions of pollutants. As emission projections uncertainties are inevitable and traditional statistical treatments of uncertainty are highly time/resources consuming, a simplified methodology for nonstatistical uncertainty estimation based on sensitivity analysis is presented in this work. The methodology was applied to the “with measures” scenario for Spain, concretely over the 12 highest emitting sectors regarding greenhouse gas and air pollutants emissions. Examples of methodology application for two important sectors (power plants, and agriculture and livestock) are shown and explained in depth. Uncertainty bands were obtained up to 2020 by modifying the driving factors of the 12 selected sectors and the methodology was tested against a recomputed emission trend in a low economic-growth perspective and official figures for 2010, showing a very good performance. Implications: A solid understanding and quantification of uncertainties related to atmospheric emission inventories and projections provide useful information for policy negotiations. However, as many of those uncertainties are irreducible, there is an interest on how they could be managed in order to derive robust policy conclusions. Taking this into account, a method developed to use sensitivity analysis as a source of information to derive nonstatistical uncertainty bands for emission projections is presented and applied to Spain. This method simplifies uncertainty assessment and allows other countries to take advantage of their sensitivity analyses.
Resumo:
El uso de aritmética de punto fijo es una opción de diseño muy extendida en sistemas con fuertes restricciones de área, consumo o rendimiento. Para producir implementaciones donde los costes se minimicen sin impactar negativamente en la precisión de los resultados debemos llevar a cabo una asignación cuidadosa de anchuras de palabra. Encontrar la combinación óptima de anchuras de palabra en coma fija para un sistema dado es un problema combinatorio NP-hard al que los diseñadores dedican entre el 25 y el 50 % del ciclo de diseño. Las plataformas hardware reconfigurables, como son las FPGAs, también se benefician de las ventajas que ofrece la aritmética de coma fija, ya que éstas compensan las frecuencias de reloj más bajas y el uso más ineficiente del hardware que hacen estas plataformas respecto a los ASICs. A medida que las FPGAs se popularizan para su uso en computación científica los diseños aumentan de tamaño y complejidad hasta llegar al punto en que no pueden ser manejados eficientemente por las técnicas actuales de modelado de señal y ruido de cuantificación y de optimización de anchura de palabra. En esta Tesis Doctoral exploramos distintos aspectos del problema de la cuantificación y presentamos nuevas metodologías para cada uno de ellos: Las técnicas basadas en extensiones de intervalos han permitido obtener modelos de propagación de señal y ruido de cuantificación muy precisos en sistemas con operaciones no lineales. Nosotros llevamos esta aproximación un paso más allá introduciendo elementos de Multi-Element Generalized Polynomial Chaos (ME-gPC) y combinándolos con una técnica moderna basada en Modified Affine Arithmetic (MAA) estadístico para así modelar sistemas que contienen estructuras de control de flujo. Nuestra metodología genera los distintos caminos de ejecución automáticamente, determina las regiones del dominio de entrada que ejercitarán cada uno de ellos y extrae los momentos estadísticos del sistema a partir de dichas soluciones parciales. Utilizamos esta técnica para estimar tanto el rango dinámico como el ruido de redondeo en sistemas con las ya mencionadas estructuras de control de flujo y mostramos la precisión de nuestra aproximación, que en determinados casos de uso con operadores no lineales llega a tener tan solo una desviación del 0.04% con respecto a los valores de referencia obtenidos mediante simulación. Un inconveniente conocido de las técnicas basadas en extensiones de intervalos es la explosión combinacional de términos a medida que el tamaño de los sistemas a estudiar crece, lo cual conlleva problemas de escalabilidad. Para afrontar este problema presen tamos una técnica de inyección de ruidos agrupados que hace grupos con las señales del sistema, introduce las fuentes de ruido para cada uno de los grupos por separado y finalmente combina los resultados de cada uno de ellos. De esta forma, el número de fuentes de ruido queda controlado en cada momento y, debido a ello, la explosión combinatoria se minimiza. También presentamos un algoritmo de particionado multi-vía destinado a minimizar la desviación de los resultados a causa de la pérdida de correlación entre términos de ruido con el objetivo de mantener los resultados tan precisos como sea posible. La presente Tesis Doctoral también aborda el desarrollo de metodologías de optimización de anchura de palabra basadas en simulaciones de Monte-Cario que se ejecuten en tiempos razonables. Para ello presentamos dos nuevas técnicas que exploran la reducción del tiempo de ejecución desde distintos ángulos: En primer lugar, el método interpolativo aplica un interpolador sencillo pero preciso para estimar la sensibilidad de cada señal, y que es usado después durante la etapa de optimización. En segundo lugar, el método incremental gira en torno al hecho de que, aunque es estrictamente necesario mantener un intervalo de confianza dado para los resultados finales de nuestra búsqueda, podemos emplear niveles de confianza más relajados, lo cual deriva en un menor número de pruebas por simulación, en las etapas iniciales de la búsqueda, cuando todavía estamos lejos de las soluciones optimizadas. Mediante estas dos aproximaciones demostramos que podemos acelerar el tiempo de ejecución de los algoritmos clásicos de búsqueda voraz en factores de hasta x240 para problemas de tamaño pequeño/mediano. Finalmente, este libro presenta HOPLITE, una infraestructura de cuantificación automatizada, flexible y modular que incluye la implementación de las técnicas anteriores y se proporciona de forma pública. Su objetivo es ofrecer a desabolladores e investigadores un entorno común para prototipar y verificar nuevas metodologías de cuantificación de forma sencilla. Describimos el flujo de trabajo, justificamos las decisiones de diseño tomadas, explicamos su API pública y hacemos una demostración paso a paso de su funcionamiento. Además mostramos, a través de un ejemplo sencillo, la forma en que conectar nuevas extensiones a la herramienta con las interfaces ya existentes para poder así expandir y mejorar las capacidades de HOPLITE. ABSTRACT Using fixed-point arithmetic is one of the most common design choices for systems where area, power or throughput are heavily constrained. In order to produce implementations where the cost is minimized without negatively impacting the accuracy of the results, a careful assignment of word-lengths is required. The problem of finding the optimal combination of fixed-point word-lengths for a given system is a combinatorial NP-hard problem to which developers devote between 25 and 50% of the design-cycle time. Reconfigurable hardware platforms such as FPGAs also benefit of the advantages of fixed-point arithmetic, as it compensates for the slower clock frequencies and less efficient area utilization of the hardware platform with respect to ASICs. As FPGAs become commonly used for scientific computation, designs constantly grow larger and more complex, up to the point where they cannot be handled efficiently by current signal and quantization noise modelling and word-length optimization methodologies. In this Ph.D. Thesis we explore different aspects of the quantization problem and we present new methodologies for each of them: The techniques based on extensions of intervals have allowed to obtain accurate models of the signal and quantization noise propagation in systems with non-linear operations. We take this approach a step further by introducing elements of MultiElement Generalized Polynomial Chaos (ME-gPC) and combining them with an stateof- the-art Statistical Modified Affine Arithmetic (MAA) based methodology in order to model systems that contain control-flow structures. Our methodology produces the different execution paths automatically, determines the regions of the input domain that will exercise them, and extracts the system statistical moments from the partial results. We use this technique to estimate both the dynamic range and the round-off noise in systems with the aforementioned control-flow structures. We show the good accuracy of our approach, which in some case studies with non-linear operators shows a 0.04 % deviation respect to the simulation-based reference values. A known drawback of the techniques based on extensions of intervals is the combinatorial explosion of terms as the size of the targeted systems grows, which leads to scalability problems. To address this issue we present a clustered noise injection technique that groups the signals in the system, introduces the noise terms in each group independently and then combines the results at the end. In this way, the number of noise sources in the system at a given time is controlled and, because of this, the combinato rial explosion is minimized. We also present a multi-way partitioning algorithm aimed at minimizing the deviation of the results due to the loss of correlation between noise terms, in order to keep the results as accurate as possible. This Ph.D. Thesis also covers the development of methodologies for word-length optimization based on Monte-Carlo simulations in reasonable times. We do so by presenting two novel techniques that explore the reduction of the execution times approaching the problem in two different ways: First, the interpolative method applies a simple but precise interpolator to estimate the sensitivity of each signal, which is later used to guide the optimization effort. Second, the incremental method revolves on the fact that, although we strictly need to guarantee a certain confidence level in the simulations for the final results of the optimization process, we can do it with more relaxed levels, which in turn implies using a considerably smaller amount of samples, in the initial stages of the process, when we are still far from the optimized solution. Through these two approaches we demonstrate that the execution time of classical greedy techniques can be accelerated by factors of up to ×240 for small/medium sized problems. Finally, this book introduces HOPLITE, an automated, flexible and modular framework for quantization that includes the implementation of the previous techniques and is provided for public access. The aim is to offer a common ground for developers and researches for prototyping and verifying new techniques for system modelling and word-length optimization easily. We describe its work flow, justifying the taken design decisions, explain its public API and we do a step-by-step demonstration of its execution. We also show, through an example, the way new extensions to the flow should be connected to the existing interfaces in order to expand and improve the capabilities of HOPLITE.