8 resultados para SPREADABLE PROCESSED CHEESE
em Universidad Politécnica de Madrid
Resumo:
Application of arc erosion to the patterning of metallic contacts in organic devices is presented. A home-made systems and details of the working principles are described. Advantages and drawbacks of this novel technology are discussed.
Resumo:
The production of minimally processed vegetables and fruits is an emergent sector, however these processes reduce the useful life of the products. Main preservation techniques such cold storage and modified atmosphere are limited. New treatments are being applied (O3 , UV‐C radiation, biodegradable films…etc.). The sector precise of cheap and fast techniques to evaluate the general quality and the security of the processed products, that constitute a tool of aid to the decision in the implementation of new procedures of packaging and/or treatments. Objectives: To explore hyperspectral imaging for monitoring the evolution of minimally processed leafy vegetables during shelf‐life . To identify and classify deterioration rates of the leaves through Multivariate analysis techniques (PLS‐DA)
Resumo:
A piece of research is presented that was conducted on the Guayanes Farmhouse Telita Cheese Producers Network located in the Piar and Padre Chien rural municipalities of Bolivar state in Venezuela. Guayanes telita cheese is a regional dairy product. The producers are to be found in a rural area with a high potential for marketing the label in the Southern Common Market (MERCOSUR). This market is the focal point of the strategic importance of this study for the Region and the Country. The research is of a descriptive scope conducted in the field. A questionnaire based on good food production practice was used as a data gathering technique. The final sample comprised 30 production units. Statistical processing was performed with version 15.2 of the STATGRAPHICS Centurion computational tool. The results would appear to confirm previous studies that point to the existence of factors that prevent these Micro-SMEs from guaranteeing the food safety of the product. The results indicate that new lines of research need to be opened up. These are oriented towards formulating strategies for the continuous improvement of these micro-SMEs, including quality control indicators.
Resumo:
The effect of water potential ( J w ) on the growth of 15 fungal species isolated from cheeses was analysed. The species, identified mainly by analysis of DNA sequences, belonged to genera Penicillium , Geotrichum , Mucor , Aspergillus , Microascus and Talaromyces . Particularly, the effect of matric potential ( J m ), and ionic (NaCl) and non-ionic (glycerol) solute potentials ( J s ) on growth rate was studied. The response of strains was highly dependent on the type of J w . For J s , clear profiles for optimal, permissive and marginal conditions for growth were obtained, and differences in growth rate were achieved comparing NaCl and glycerol for most of the species. Conversely, a sustained growth was obtained for J m in all the strains, with the exception of Aspergillus pseudoglaucus , whose growth increased proportionally to the level of water stress. Our results might help to understand the impact of environmental factors on the ecophysiology and dynamics of fungal populations associated to cheeses.
Resumo:
It has been demonstrated that mechanical alloying and subsequent consolidation by hot isostatic pressing (HIP) is a successful route to produce dispersion strengthened W alloys with properties satisfying the design requirements of particular plasma facing components in the fusion reactor. However, the presence of the alloying element as a phase filling large interstices between W particles appears to reduce the mechanical properties of these alloys. In order to limit this phase separation induced by the HIP treatment and the detrimental effects on the mechanical properties, the enhancement of the mechanical alloying process, and the effect of a postconsolidation heat treatment in an reducing atmosphere, have been investigated.
Resumo:
One of the challenges of science and engineering nowadays is to develop new ways to supply energy in a sustainable and ecological mode. The fussion energy could be the final answer but a myriad of problems must be solved previously.
Resumo:
W–2Ti and W–1TiC alloys were produced by mechanical alloying and consolidation by hot isostatic pressing. The composition and microstructural characteristics of these alloys were studied by X-ray diffraction, energy dispersion spectroscopy and scanning electron microscopy. The mechanical behavior of the consolidated alloys was characterized by microhardness measurements and three point bending tests. The mechanical characteristics of the W–2Ti alloy appear to be related to solution hardening. In W–1TiC, the residual porosity should be responsible for the poor behavior observed in comparison with W–2Ti.
Resumo:
The effect of water potential ( J w ) on the growth of 15 fungal species isolated from cheeses was analysed. The species, identi fi ed mainly by analysis of DNA sequences, belonged to genera Penicillium, Geotrichum, Mucor , Aspergillus , Microascus and Talaromyces . Particularly, the effect of matric potential ( J m ), and ionic (NaCl) and non-ionic (glycerol) solute potentials ( J s ) on growth rate was studied. The response of strains was highly dependent on the type of J w . For J s, clear profiles for optimal, permissive and marginal conditions for growth were obtained, and differences in growth rate were achieved comparing NaCl and glycerol for most of the species. Conversely, a sustained growth was obtained for J m in all the strains, with the exception of Aspergillus pseudoglaucus, whose growth increased proportionally to the level of water stress. Our results might help to understand the impact of environmental factors on the ecophysiology and dynamics of fungal populations associated to cheeses.