4 resultados para SOYBEAN OIL

em Universidad Politécnica de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two experiments (Exp.) were conducted to determine the AME content of refined soybean oil (SO), recycled soybean oil (RSO), and acidulated soybean oil soapstocks (ASO) and the effects of inclusion of vitamin E and vitamin C in diets containing 3.5% of these soy oils on performance and egg quality of Hy-line hens from 44 to 56 wks of age.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los objetivos principales de esta Tesis Doctoral fueron estudiar en 4 ensayos los efectos a) del procesado del maíz y la inclusión en los piensos de ingredientes de alta calidad como harina de pescado o fuentes de lactosa en lechones blancos b) inclusión en el pienso de diferentes productos derivados del haba de soja, con diferente contenido de proteína bruta (PB), tamaño de partícula y origen en lechones blancos e ibéricos y c) inclusión en el pienso de lechones ibéricos de ingredientes de alta calidad; forma de presentación del pienso y la duración del suministro del pienso prestárter sobre los parámetros productivos, la digestibilidad de los nutrientes, y las características morfológicas de la mucosa digestiva en lechones blancos e ibéricos recién destetados. En el experimento 1, los efectos de la complejidad del pienso prestárter sobre los parámetros productivos y la digestibilidad total aparente (TTAD) de los nutrientes fueron estudiados en lechones blancos recién destetados. Se utilizaron 10 tratamientos experimentales como resultado de 5 piensos prestárter (21 a 41 d de edad) y 2 piensos estárter (42 a 62 d de edad). Los piensos prestárter consistieron en un control negativo que incluía 40% de maíz crudo, 4% de harina de pescado y 7% de lactosa, un control positivo que incluía 40% de maíz cocido, 10% de harina de pescado, y 14% de lactosa, y 3 piensos adicionales con similares ingredientes que el pienso control positivo pero en los que a) 40% de maíz cocido fue sustituido por el mismo porcentaje de maíz crudo, b) se redujo el nivel de harina de pescado del 10 al 4%, y c) se redujo el nivel de lactosa del 14 al 7%. Cada tratamiento se replicó 6 veces (6 lechones/departamento). De 42 a 62 d de edad, la mitad de cada uno de los 5 piensos prestárter recibió un pienso estándar compuesto por harina de soja- maíz crudo y manteca y la otra mitad un pienso con similar perfil nutricional pero incluyendo un 20% de maíz cocido, 5% de harina de pescado, 1.3% de lactosa, 2% de concentrado de proteína de soja obtenido por fermentación y 1% de aceite de soja en lugar de harina de soja, maíz sin procesar y manteca. La complejidad del pienso no afectó a los parámetros productivos en ninguno de los periodos estudiados, pero el índice de diarreas durante la fase prestárter fue mayor en los lechones que recibieron el pienso control negativo que en los alimentados con cualquiera de los otros piensos (P<0.05). A los 30 días de edad (piensos prestárter), la digestibilidad de la materia orgánica (MO) y de la energía bruta (EB) fue menor (P<0.001) en los lechones que consumieron el pienso control negativo que en los lechones que consumieron cualquiera de los otros piensos. Sin embrago, la digestibilidad fecal de la PB no fue afectada. A los 50 días de edad (piensos estárter), la digestibilidad de los nutrientes fue similar en ambos piesnsos. Se concluye que la utilización de niveles elevados de ingredientes de alta calidad en los piensos no mejora los parámetros productivos de los lechones blancos en ninguno de los períodos estudiados. De 21 a 41 días de edad, el índice de diarreas se redujo y la digestibilidad de los nutrientes aumentó con la utilización de piensos de mayor calidad. Por lo tanto, la utilización de piensos con niveles elevados de ingredientes de calidad para reducir problemas digestivos y por lo tanto, mejorar los parámetros productivos podría estar justificada en algunos casos. En el experimento 2, se estudiaron los efectos de la inclusión en el pienso de harina de soja con diferente contenido de PB (44 vs. 49 % PB), la micronización de la harina de soja de alta proteína (AP-HS; 49% PB) y la utilización de concentrado de proteína de soja (CPS; 65% PB) sobre los parámetros productivos y la TTAD de los nutrientes en lechones blancos recién destetados de 28 a 63 días de edad. De 28 a 49 días de edad (fase I), hubo un pienso control positivo con un 10% de CPS, un pienso control negativo con 14.8% de harina de soja estándar (R-HS; 44% de PB) y otros 4 piensos que incluían 13.3% de AP-HS de origen Americano (USA) o Argentino (ARG) y molidas groseramente (980 μm) o micronizadas (80 μm). Cada tratamiento se replicó 8 veces (6 lechones/departamento). De 49 a 63 días de edad (fase II), todos los lechones recibieron un pienso comercial común en forma de harina. En el global de la fase I, el tratamiento experimental no afectó a ninguno de los parámetros productivos estudiados. Sin embargo, de 28 a 35 días de edad, los lechones alimentados con AP-HS micronizadas tuvieron un mejor índice de conversión (IC; 1.11 vs. 0.98; P<0.05) que los alimentados con AP-HS molidas groseramente. También, de 35 a 42 días de edad, los lechones que recibieron el pienso con AP-HS micronizada tendieron (P=0.08) a consumir más pienso que los lechones que consumieron el pienso con AP-HS molida. Durante la fase II (49 a 63 días de edad), cuando todos los lechones recibieron un pienso común, no se observaron diferencias en productividad de los lechones debido al tratamiento previo. En general, la digestibilidad de los nutrientes a los 35 días de edad fue mayor para los lechones que consumieron CPS que para los lechones que consumieron R-HS con los lechones que consumieron AP-HS en una posición intermedia. La digestibilidad de la PB fue mayor (P≤0.01) para el pienso que contenía CPS que para el promedio de los 5 tratamientos en base a HS. También, la digestibilidad de la MO y de la materia seca (MS) fue mayor para el pienso que contenía AP-HS micronizada o molida groseramente que para el pienso que contenía R-HS. La micronización de la AP-HS no tuvo efecto alguno sobre la digestibilidad de los nutrientes. Se concluye que cuando el CPS sustituye en el pienso a R-HS, la digestibilidad de la PB aumenta pero no tiene efecto alguno sobre los parámetros productivos. La utilización de AP-HS en sustitución de R-HS en el pienso mejora la digestibilidad de los nutrientes pero no afecta a los parámetros productivos. La utilización de harina de soja micronizada en los piensos mejora la eficiencia alimenticia durante la primera semana post-destete pero no tiene efecto alguno sobre la digestibilidad de los nutrientes. En general, la inclusión de productos derivados del haba de soja con un alto valor añadido (CPS o AP-HS) en el pienso presenta pocas ventajas en términos productivos al uso de AP-HS en lechones blancos recién destetados. En el experimento 3, se estudiaron los mismos productos de soja y piensos similares al experimento 2 en lechones ibéricos recién destetados. Además de los parámetros productivos y la TTAD de los nutrientes, en este ensayo se estudió también la digestibilidad ileal aparente (AID) de los nutrientes, así como las características histológicas y morfometría de la mucosa ileal. Cada uno de los 6 tratamientos fue replicado 6 veces (6 lechones/departamento). De 30 a 51 días de edad la fuente de harina de soja no afectó a los parámetros productivos, pero el índice de diarreas fue mayor (P<0.001) y la TTAD y AID de los nutrientes menor en los lechones alimentados con R-HS que en los alimentados con CPS o AP-HS. Sin embargo, no se encontró ninguna diferencia para éstos parámetros entre los piensos que contenían AP-HS y CPS. La TTAD de la MO (P=0.07) y de la EB (P=0.05) tendieron a ser mayores en los piensos basados en AP-HS micronizada que en los basados en AP-HS molida. La TTAD de la EB tendió (P<0.05) a ser mayor para la AP-HS de origen USA que para la AP-HS de origen ARG. Los lechones que consumieron R-HS presentaron villi de menor longitud (P<0.01) que los lechones que consumieron AP-HS o CPS, pero no se observaron diferencias en el caso de los lechones que recibieron los piensos que contenían AP-HS o CPS. Se concluye que la inclusión de AP-HS o CPS en el pienso en sustitución de R-HS reduce el índice de diarreas y mejora la digestibilidad de los nutrientes y las características morfológicas del íleon sin afectar a los parámetros productivos. La utilización de piensos basados en productos derivados del haba de soja con mayor valor añadido (CPS o AP-HS) en sustitución de la R-HS, mejora la TTAD de todos los nutrientes y reduce el índice de diarreas si llegar afectar a los parámetros productivos. En el experimento 4 se estudiaron los efectos del contenido de PB y la complejidad del pienso, la presentación física y la duración del suministro del pienso prestárter sobre los parámetros productivos y la TTAD de los nutrientes en lechones ibéricos recién destetados de 28 a 63 días de edad. Hubo 12 tratamientos experimentales con 2 tipos de pienso (AC; calidad alta y BC: calidad media), 2 presentaciones del pienso (gránulo y harina) y 3 duraciones de suministro del pienso prestárter (7, 14 y 21 días). Desde los 7, 14 y 21 días de experimento (dependiendo del tratamiento), hasta los 35 días, todos los lechones recibieron un pienso comercial en forma de harina. Cada uno de los tratamientos fue replicado 3 veces (6 lechones/departamento). En el global del experimento, la ganancia media diaria (GMD; P<0.05) y el consumo medio diario (CMD; P<0.01) fue menor en los lechones que recibieron el pienso AC que para los que recibieron el pienso de BC, si bien el IC no se vio afectado. La granulación del pienso prestárter no afectó a los crecimientos pero mejoró la eficiencia alimenticia. La utilización del pienso prestárter de 0 a 21 días de prueba mejoró el IC (P<0.05), pero redujo la GMD (P<0.01) en comparación con la utilización de éste pienso solo durante 7 o 14 días. El índice de diarreas tendió a ser mayor (P=0.06) en los lechones alimentados con los piensos AC que en los alimentados con los piensos BC. Asimismo, el índice de diarreas fue superior en los lechones que recibieron el pienso en gránulo que los que los recibieron en harina (P<0.001). Además, el índice de diarreas fue superior en los lechones que recibieron el pienso prestárter durante 14 o 21 días que en los que lo recibieron solo durante 7 días (P<0.01). De 28 a 49 días de edad, la GMD y el IC no se vieron afectados por la complejidad del pienso, pero la presentación en gránulo o el aumento en la duración de suministro del pienso prestárter mejoró el IC (P<0.01). También, en este periodo el índice de diarreas fue mayor en lechones alimentados con piensos granulados que aquellos alimentados con piensos en harina. Asimismo, fue superior para los lechones alimentados con el pienso prestárter durante 14 o 21 días que para los que recibieron éste pienso solo durante 7 días (P<0.01). De 49 a 63 días de edad, los lechones que previamente habían recibido piensos BC crecieron más que los que recibieron piensos AC (P<0.001). Asimismo, los lechones que recibieron el pienso prestárter durante 21 días comieron (P< 0.001) y crecieron menos (P<0.05) presentando una peor eficacia alimenticia (P<0.05) que los lechones que lo recibieron solo durante 7 14 días. La digestibilidad de la MO fue mayor en los lechones alimentados con los piensos AC que en los alimentados con piensos BC (P<0.05). La granulación del pienso mejoró la digestibilidad de los principales nutrientes. Los piensos prestárter AC mejoraron la digestibilidad de los nutrientes pero no la eficiencia alimenticia en lechones ibéricos de 28 a 63 días de edad. La granulación del pienso mejoró la eficiencia alimenticia. El aumento del suministro del pienso prestárter de 7 a 21 días mejoró la eficiencia alimenticia pero redujo la GMD. Por lo tanto, la utilización de piensos granulados de alta calidad durante el periodo prestárter es recomendable en lechones ibéricos, pero solo durante la primera semana post-destete. ABSTRACT The main objectives of this PhD Thesis were to study the effects of a) heat processing (HP) of corn and inclusion of high quality ingredients of animal origin such as fish meal (FM) and dried milk products in the diet, b) inclusion of different soy products varying in crude protein (CP) content, particle size, and origin of the beans in diets for conventional white and Iberian weanling pigs, and c) effects of ingredient quality, feed form, and duration of supply of the phase I diets on growth performance, nutrient digestibility, and intestinal morphology of weanling pigs. In experiment 1, the effect of diet complexity on total tract apparent digestibility (TTAD) and growth performance was studied in piglets from 21 to 62 d of age. There were 10 experimental treatments which resulted from the combination of 5 phase I (21 to 41 d of age) and 2 phase II (42 to 62 d of age) diets. The 5 phase I diets consisted of a negative control diet that contained 40 % raw corn, 4% FM, and 7% lactose (LAC); a positive control diet that contained 40 % HP corn, 10% FM, and 14% LAC, and 3 extra diets that used similar ingredients to those of the positive control diet but in which a) 40% of HP corn was substituted by raw corn, b) 4% FM rather than 10% FM, and c) 7% LAC instead of 14% LAC were included in the diet. Each treatment was replicated 6 times (6 pigs per pen). From 42 to 62 d of age, half of the pens of each of the 5 phase I treatments received a standard soybean meal (SBM)–native corn–lard diet wheras the other half received a diet with similar nutrient profile but that included 20% HP corn, 5% FM, 1.3% lactosa, 2% fermented soy protein concentrate, and 1% soybean oil in substitution of variables amounts of non-processed corn, SBM, and lard. Dietary treatment did not affect piglet performance at any age, but the incidence of post-weaning diarrhea (PWD) was higher during phase I in piglets fed the negative control diet than in piglets fed any of the other diets (P<0.05). At 30 d of age (phase I diets), the TTAD of organic matter (OM) and gross energy (GE) was lower (P<0.001) in pigs fed the negative control diet than in pigs fed the other diets but CP digestibility was not affected. At 50 d of age (phase II diets), dietary treatment did not affect TTAD of any dietary component. It is concluded that the use of high quality ingredients at high levels in the diet did not improve growth performance of piglets at any age. From 21 to 41 d of age, PWD was reduced and nutrient digestibility was increased in pigs fed the more complex diets. Consequently, the inclusion of high levels of high quality ingredients in piglet diets to maximize growth performance might not be justified under all circumstances In experiment 2, the effect of CP content (44 vs. 49 % CP) of SBM, micronization (fine grinding) of the high CP SBM (HP-SBM; 49% CP), and soy protein concentrate (SPC; 65% CP) on TTAD and growth performance was studied in conventional white piglets from 28 to 63 d of age. From 28 to 49 d of age (phase I), there was a positive control diet that included 6.5% CP from SPC and a negative control diet that supplied the same amount of CP as regular SBM (R-SBM; 44% CP) of Argentina (ARG) origin. The other 4 diets included the same amount of dietary CP from 2 sources of HP-SBM (USA or ARG origin), either ground (990 μm) or micronized (60 μm). Each treatment was replicated 8 times (6 pigs per pen). From 49 to 63 d of age (phase II), all pigs were fed a common commercial starter diet. For the entire phase I, type of soy product included in the diet did not affect growth performance of the pigs. However, from 28 to 35 d of age pigs fed the micronized HP-SBM had better feed conversion ratio (FCR; 0.90 vs. 1.01; P<0.05) than pigs fed the ground HP-SBM. Also, from 35 to 42 d of age, average daily feed intake (ADFI) tended to be higher (P=0.08) for pigs fed the micronized HP-SBM than for pigs fed the ground HP-SBM. During phase II, when all the pigs received the same diet, no differences among treatments were observed. In general, the TTAD of nutrients at 35 d of age was higher for the SPC than for the R-SBM diet with the HP-SBM diets being intermediate. The TTAD of CP was higher (83.8% vs. 81.9%; P≤0.01) for the SPC diet than for the average of 5 SBM containing diets. Also, the digestibility of OM and dry matter (DM) was higher (P<0.01) for the HP-SBM, either ground or micronized, than for the R-SBM diet. Micronization of the HP-SBM did not affect nutrient digestibility. It is concluded that when R-SBM was substituted by SPC, CP digestibility was improved but no effects on growth performance were observed. The use of HP-SBM in substitution of R-SBM in the diet improved nutrient digestibility but did not affect piglet performance. The inclusion of micronized HP-SBM in the diet improved FCR during the first week post-weaning but did not affect TTAD of nutrients. Therefore, the inclusion of added value soy products (SPC or micronized SBM) in the diet presents little advantage in terms of growth performance over the use of HP-SBM in pigs weaned at 28 d of age. In experiment 3, the effects of the same sources of soy protein used in experiment 2 on TTAD and growth performance of crossbreed Iberian pigs from 30 to 61 d of age were studied. In addition, the apparent ileal digestibility (AID) of nutrients and mucosa ileum morphology were also determined. Dietary treatment did not affect growth performance of the pigs at any age but from 30 to 51 d of age (phase I diets), PWD was higher (P<0.001) and the TTAD and AID of all nutrients were lower for pigs fed the R-SBM diet than for pigs fed the HP-SBM or the SPC diets. However, no differences between the HP-SBM and the SPC containing diets were detected for digestibility of any dietary component. The TTAD of OM (P=0.07) and GE (P=0.05) tended to be higher for the micronized HP-SBM than for the ground HP-SBM and that of GE was higher (P<0.05) for the USA meal than for the ARG meal. Pigs fed R-SBM had lower villus height (P<0.01) than pigs fed HP-SBM or SPC but no differences in ileal mucosal morphology were detected between SPC and HP-SBM containing diets. It is concluded that feeding the HP-SBM or SPC in substitution of R-SBM reduced PWD and improved nutrient digestibility and ileal morphology in piglets as compared with feeding the R-SBM, but had no effect on growth performance. The inclusion in the diet of added value soy products (micronized SBM or SPC) in substitution of the R-SBM increased the TTAD of all nutrients and reduced PWD but had no advantage in terms of growth performance over the use of ground HP-SBM. In experiment 4, the effect of CP content and ingredient complexity, feed form, and duration of feeding of the phase I diets on growth performance and TTAD of nutrients were studied in Iberian pigs from 28 to 63 d of age. There were 12 dietary treatments with 2 type of feeds (HQ; higher quality and LQ; medium quality), 2 feed forms (pellets vs. mash), and 3 durations of supply (7, 14, and 21 d) of the phase I diets. From d 7, 14, or 21 (depending on treatment) to d 35 of experiment, all pigs received a common diet in mash form. Each treatment was replicated 3 times (6 pigs/pen). For the entire experiment, average daily gain (ADG; P<0.05) and ADFI (P<0.01) were lower with the HQ than with the LQ phase I diets but FCR was not affected. Pelleting of the phase I diets did not affect ADG but improved FCR (P<0.01). Feeding the phase I diets from d 0 to 21 improved FCR (P<0.05) but decreased ADG (P<0.01) as compared with 7 or 14 d of feeding. Post-weaning diarrhea tended to be higher (P=0.06) for pigs fed the HQ diets than for pigs fed the LQ diets and for pigs fed pellets than for pigs fed mash (P<0.001). Also, PWD was higher for pigs fed the phase I diet for 14 or 21 d than for pigs fed this diet for 7 d (P<0.01). From d 0 to 21, ADG and FCR were not affected by feed quality but feeding pellets or increasing the duration of feeding the phase I diets improved FCR (P<0.01). Also, in this period PWD was higher with pellets than with mash and for pigs fed the phase I diets for 14 or 21 d than for pigs fed this diet for only 7 d (P<0.01). From d 21 to 35, pigs previously fed the LQ diet had higher ADG than pigs fed the HQ phase I diets (P<0.001). Also, pigs that were fed the phase I diets for 21 d had lower ADG (P<0.05) and ADFI (P< 0.001) and poor FCR (P<0.05) than pigs fed these diets for 7 or 14 d. Organic matter digestibility was higher for pigs fed the HQ phase I diets than for pigs fed the LQ phase I diets (P<0.05). Pelleting improved TTAD of all nutrients (P<0.01). It is concluded that HQ phase I diets increased TTAD of nutrients but not feed efficiency of Iberian pigs from d 28 to 63 d of age. Also, pelleting improved nutrient digestibility and feed efficiency. Increasing the duration of supply of the phase I diets from 7 to 21 d improved feed efficiency but reduced ADG. Therefore, the use of LQ phase I diets in pellet form for no more than 7 d after weaning is recommended in Iberian pigs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los objetivos de esta tesis fueron 1) obtener y validar ecuaciones de predicción para determinar in vivo la composición corporal y de la canal de conejos en crecimiento de 25 a 77 días de vida utilizando la técnica de la Impedancia Bioeléctrica (BIA), y 2) evaluar su aplicación para determinar diferencias en la composición corporal y de la canal, así como la retención de nutrientes de animales alimentados con diferentes fuentes y niveles de grasa. El primer estudio se realizó para determinar y después validar, usando datos independientes, las ecuaciones de predicción obtenidas para determinar in vivo la composición corporal de los conejos en crecimiento. Se utilizaron 150 conejos a 5 edades distintas (25, 35, 49, 63 y 77 días de vida), con un rango de pesos entre 231 y 3138 g. Para determinar los valores de resistencia (Rs,) and reactancia (Xc,) se usó un terminal (Model BIA-101, RJL Systems, Detroit, MI USA) con cuatro electrodos. Igualmente se registró la distancia entre electrodos internos (D), la longitud corporal (L) y el peso vivo (PV) de cada animal. En cada edad, los animales fueron molidos y congelados (-20 ºC) para su posterior análisis químico (MS, grasa, proteína, cenizas y EB). El contenido en grasa y energía de los animales se incrementó, mientras que los contenidos en proteína, cenizas y agua de los animales disminuyeron con la edad. Los valores medios de Rs, Xc, impedancia (Z), L y D fueron 83.5 ± 23.1 , 18.2 ± 3.8 , 85.6 ± 22.9 , 30.6 ± 6.9 cm y 10.8 ± 3.1 cm. Se realizó un análisis de regresión lineal múltiple para determinar las ecuaciones de predicción, utilizando los valores de PV, L and Z como variables independientes. Las ecuaciones obtenidas para estimar los contenidos en agua (g), PB (g), grasa (g), cenizas (g) and EB (MJ) tuvieron un coeficiente de determinación de (R2) de 0.99, 0.99, 0.97, 0.98 y 0.99, y los errores medios de predicción relativos (EMPR) fueron: 2.79, 6.15, 24.3, 15.2 y 10.6%, respectivamente. Cuando el contenido en agua se expresó como porcentaje, los valores de R2 y EMPR fueron 0.85 and 2.30%, respectivamente. Al predecir los contenidos en proteína (%MS), grasa (%MS), cenizas (%MS) y energía (kJ/100 g MS), se obtuvieron valores de 0.79, 0.83, 0.71 y 0.86 para R2, y 5.04, 18.9, 12.0 y 3.19% para EMPR. La reactancia estuvo negativamente correlacionada con el contenido en agua, cenizas y PB (r = -0.32, P < 0.0001; r = -0.20, P < 0.05; r = -0.26, P < 0.01) y positivamente correlacionada con la grasa y la energía (r = 0.23 y r = 0.24; P < 0.01). Sin embargo, Rs estuvo positivamente correlacionada con el agua, las cenizas y la PB (r = 0.31, P < 0.001; r = 0.28, P < 0.001; r = 0.37, P < 0.0001) y negativamente con la grasa y la energía (r = -0.36 y r = -0.35; P < 0.0001). Igualmente la edad estuvo negativamente correlacionada con el contenido en agua, cenizas y proteína (r = -0.79; r = -0.68 y r = -0.80; P < 0.0001) y positivamente con la grasa y la energía (r = 0.78 y r = 0.81; P < 0.0001). Se puede concluir que el método BIA es una técnica buena y no invasiva para estimar in vivo la composición corporal de conejos en crecimiento de 25 a 77 días de vida. El objetivo del segundo estudio fue determinar y validar con datos independientes las ecuaciones de predicción obtenidas para estimar in vivo la composición de la canal eviscerada mediante el uso de BIA en un grupo de conejos de 25 a 77 días, así como testar su aplicación para predecir la retención de nutrientes y calcular las eficacias de retención de la energía y del nitrógeno. Se utilizaron 75 conejos agrupados en 5 edades (25, 35, 49, 63 y 77 días de vida) con unos pesos que variaron entre 196 y 3260 g. Para determinar los valores de resistencia (Rs, ) y reactancia (Xc, ) se usó un terminal (Model BIA-101, RJL Systems, Detroit, MI USA) con cuatro electrodos. Igualmente se registró la distancia entre electrodos internos (D), la longitud corporal (L) y el peso vivo (PV) del cada animal. En cada edad, los animales fueron aturdidos y desangrados. Su piel, vísceras y contenido digestivo fueron retirados, y la canal oreada fue pesada y molida para posteriores análisis (MS, grasa, PB, cenizas y EB). Los contenidos en energía y grasa aumentaron mientras que los de agua, cenizas y proteína disminuyeron con la edad. Los valores medios de Rs, Xc, impedancia (Z), L y D fueron 95.9±23.9 , 19.5±4.7 , 98.0±23.8 , 20.6±6.3 cm y 13.7±3.1 cm. Se realizó un análisis de regresión linear múltiple para determinar las ecuaciones de predicción, utilizando los valores de PV, L and Z como variables independientes. Los coeficientes de determinación (R2) de las ecuaciones obtenidas para estimar los contenidos en agua (g), PB (g), grasa (g), cenizas (g) and EB (MJ) fueron: 0.99, 0.99, 0.95, 0.96 y 0.98, mientras que los errores medios de predicción relativos (EMPR) fueron: 4.20, 5.48, 21.9, 9.10 y 6.77%, respectivamente. Cuando el contenido en agua se expresó como porcentaje, los valores de R2 y EMPR fueron 0.79 y 1.62%, respectivamente. Cuando se realizó la predicción de los contenidos en proteína (%MS), grasa (%MS), cenizas (%MS) y energía (kJ/100 g MS), los valores de R2 fueron 0.68, 0.76, 0.66 and 0.82, y los de RMPE: 3.22, 10.5, 5.82 and 2.54%, respectivamente. La reactancia estuvo directamente correlacionada con el contenido en grasa (r = 0.24, P < 0.05), mientras que la resistencia guardó una correlación positiva con los contenidos en agua, cenizas y proteína (r = 0.55, P < 0.001; r = 0.54, P < 0.001; r = 0.40, P < 0.005) y negativa con la grasa y la energía (r = -0.44 y r = -0.55; P < 0.001). Igualmente la edad estuvo negativamente correlacionada con los contenidos en agua, cenizas y PB (r = -0.94; r = -0.85 y r = -0.75; P < 0.0001) y positivamente con la grasa y la energía (r = 0.89 y r = 0.90; P < 0.0001). Se estudió la eficacia global de retención de la energía (ERE) y del nitrógeno (ERN) durante todo el periodo de cebo (35-63 d), Los valores de ERE fueron 20.4±7.29%, 21.0±4.18% and 20.8±2.79% en los periodos 35 a 49, 49 a 63 y 35 a 63 d, respectivamente. ERN fue 46.9±11.7%, 34.5±7.32% y 39.1±3.23% para los mismos periodos. La energía fue retenida en los tejidos para crecimiento con una eficiencia del 52.5% y la eficiencia de retención de la energía como proteína y grasa fue de 33.3 y 69.9% respectivamente. La eficiencia de utilización del nitrógeno para crecimiento fue cercana al 77%. Este trabajo muestra como el método BIA es técnica buena y no invasiva para determinar in vivo la composición de la canal y la retención de nutrientes en conejos en crecimiento de 25 a 77 días de vida. En el tercer estudio, se llevaron a cabo dos experimentos con el fin de investigar los efectos del nivel de inclusión y de la fuente de grasa, sobre los rendimientos productivos, la mortalidad, la retención de nutrientes y la composición corporal total y de la canal eviscerada de conejos en crecimiento de 34 a 63 d de vida. En el Exp. 1 se formularon 3 dietas con un diseño experimental factorial 3 x 2 con el tipo de grasa utilizada: Aceite de Soja (SBO), Lecitinas de Soja (SLO) y Manteca (L) y el nivel de inclusión (1.5 y 4%) como factores principales. El Exp. 2 también fue diseñado con una estructura factorial 3 x 2, pero usando SBO, Aceite de Pescado (FO) y Aceite de Palmiste como fuentes de grasa, incluidas a los mismos niveles que en el Exp. 1. En ambos experimentos 180 animales fueron alojados en jaulas individuales (n=30) y 600 en jaulas colectivas en grupos de 5 animales (n=20). Los animales alimentados con un 4% de grasa añadida tuvieron unos consumos diarios y unos índices de conversión más bajos que aquellos alimentados con las dietas con un 1.5% de grasa. En los animales alojados en colectivo del Exp. 1, el consumo fue un 4.8% más alto en los que consumieron las dietas que contenían manteca que en los animales alimentados con las dietas SBO (P = 0.036). La inclusión de manteca tendió a reducir la mortalidad (P = 0.067) en torno al 60% y al 25% con respecto a las dietas con SBO y SLO, respectivamente. La mortalidad aumentó con el nivel máximo de inclusión de SLO (14% vs. 1%, P < 0.01), sin observarse un efecto negativo sobre la mortalidad con el nivel más alto de inclusión de las demás fuentes de grasa utilizadas. En los animales alojados colectivo del Exp. 2 se encontró una disminución del consumo (11%), peso vivo a 63 d (4.8%) y de la ganancia diaria de peso (7.8%) con la inclusión de aceite de pescado con respecto a otras dietas (P < 0.01). Los dos últimos parámetros se vieron especialmente más reducidos cuando en las dietas se incluyó el nivel más alto de FO (5.6 y 9.5%, respectivamente, (P < 0.01)). Los animales alojados individualmente mostraron unos resultados productivos muy similares. La inclusión de aceite pescado tendió (P = 0.078) a aumentar la mortalidad (13.2%) con respecto al aceite de palmiste (6.45%), siendo intermedia para las dietas que contenían SBO (8.10%). La fuente o el nivel de grasa no afectaron la composición corporal total o de la canal eviscerada de los animales. Un incremento en el nivel de grasa dio lugar a una disminución de la ingesta de nitrógeno digestible (DNi) (1.83 vs. 1.92 g/d; P = 0.068 en Exp. 1 y 1.79 vs. 1.95 g/d; P = 0.014 en Exp. 2). Debido a que el nitrógeno retenido (NR) en la canal fue similar para ambos niveles (0.68 g/d (Exp. 1) y 0.71 g/d (Exp. 2)), la eficacia total de retención del nitrógeno (ERN) aumentó con el nivel máximo de inclusión de grasa, pero de forma significativa únicamente en el Exp. 1 (34.9 vs. 37.8%; P < 0.0001), mientras que en el Exp. 2 se encontró una tendencia (36.2 vs. 38.0% en Exp. 2; P < 0.064). Como consecuencia, la excreción de nitrógeno en heces fue menor en los animales alimentados con el nivel más alto de grasa (0.782 vs. 0.868 g/d; P = 0.0001 en Exp. 1, y 0.745 vs. 0.865 g/d; P < 0.0001 en Exp.2) al igual que el nitrógeno excretado en orina (0.702 vs. 0.822 g/d; P < 0.0001 en Exp. 1 y 0.694 vs. 0.7999 g/d; P = 0.014 en Exp.2). Aunque no hubo diferencias en la eficacia total de retención de la energía (ERE), la energía excretada en heces disminuyó al aumentar el nivel de inclusión de grasa (142 vs. 156 Kcal/d; P = 0.0004 en Exp. 1 y 144 vs. 154 g/d; P = 0.050 en Exp. 2). Sin embargo, la energía excretada como orina y en forma de calor fue mayor en el los animales del Exp. 1 alimentados con el nivel más alto de grasa (216 vs. 204 Kcal/d; P < 0.017). Se puede concluir que la manteca y el aceite de palmiste pueden ser considerados como fuentes alternativas al aceite de soja debido a la reducción de la mortalidad, sin efectos negativos sobre los rendimientos productivos o la retención de nutrientes. La inclusión de aceite de pescado empeoró los rendimientos productivos y la mortalidad durante el periodo de crecimiento. Un aumento en el nivel de grasa mejoró el índice de conversión y la eficacia total de retención de nitrógeno. ABSTRACT The aim of this Thesis is: 1) to obtain and validate prediction equations to determine in vivo whole body and carcass composition using the Bioelectrical Impedance (BIA) method in growing rabbits from 25 to 77 days of age, and 2) to study its application to determine differences on whole body and carcass chemical composition, and nutrient retention of animals fed different fat levels and sources. The first study was conducted to determine and later validate, by using independent data, the prediction equations obtained to assess in vivo the whole body composition of growing rabbits. One hundred and fifty rabbits grouped at 5 different ages (25, 35, 49, 63 and 77 days) and weighing from 231 to 3138 g were used. A four terminal body composition analyser was used to obtain resistance (Rs, ) and reactance (Xc, ) values (Model BIA-101, RJL Systems, Detroit, MI USA). The distance between internal electrodes (D, cm), body length (L, cm) and live BW of each animal were also registered. At each selected age, animals were slaughtered, ground and frozen (-20 ºC) for later chemical analyses (DM, fat, CP, ash and GE). Fat and energy body content increased with the age, while protein, ash, and water decreased. Mean values of Rs, Xc, impedance (Z), L and D were 83.5 ± 23.1 , 18.2 ± 3.8 , 85.6 ± 22.9 , 30.6 ± 6.9 cm and 10.8 ± 3.1 cm. A multiple linear regression analysis was used to determine the prediction equations, using BW, L and Z data as independent variables. Equations obtained to estimate water (g), CP (g), fat (g), ash (g) and GE (MJ) content had, respectively, coefficient of determination (R2) values of 0.99, 0.99, 0.97, 0.98 and 0.99, and the relative mean prediction error (RMPE) was: 2.79, 6.15, 24.3, 15.2 and 10.6%, respectively. When water was expressed as percentage, the R2 and RMPE were 0.85 and 2.30%, respectively. When prediction of the content of protein (%DM), fat (%DM), ash (%DM) and energy (kJ/100 g DM) was done, values of 0.79, 0.83, 0.71 and 0.86 for R2, and 5.04, 18.9, 12.0 and 3.19% for RMPE, respectively, were obtained. Reactance was negatively correlated with water, ash and CP content (r = -0.32, P < 0.0001; r = -0.20, P < 0.05; r = -0.26, P < 0.01) and positively correlated with fat and GE (r = 0.23 and r = 0.24; P < 0.01). Otherwise, resistance was positively correlated with water, ash and CP (r = 0.31, P < 0.001; r = 0.28, P < 0.001; r = 0.37, P < 0.0001) and negatively correlated with fat and energy (r = -0.36 and r = -0.35; P < 0.0001). Moreover, age was negatively correlated with water, ash and CP content (r = -0.79; r = -0.68 and r = -0.80; P < 0.0001) and positively correlated with fat and energy (r = 0.78 and r = 0.81; P < 0.0001). It could be concluded that BIA is a non-invasive good method to estimate in vivo whole body composition of growing rabbits from 25 to 77 days of age. The aim of the second study was to determine and validate with independent data, the prediction equations obtained to estimate in vivo carcass composition of growing rabbits by using the results of carcass chemical composition and BIA values in a group of rabbits from 25 to 77 days. Also its potential application to predict nutrient retention and overall energy and nitrogen retention efficiencies was analysed. Seventy five rabbits grouped at 5 different ages (25, 35, 49, 63 and 77 days) with weights ranging from 196 to 3260 g were used. A four terminal body composition analyser (Model BIA-101, RJL Systems, Detroit, MI USA) was used to obtain resistance (Rs, ) and reactance (Xc, ) values. The distance between internal electrodes (D, cm), body length (L, cm) and live weight (BW, g) were also registered. At each selected age, all the animals were stunned and bled. The skin, organs and digestive content were removed, and the chilled carcass were weighed and processed for chemical analyses (DM, fat, CP, ash and GE). Energy and fat increased with the age, while CP, ash, and water decreased. Mean values of Rs, Xc, impedance (Z), L and D were 95.9±23.9 , 19.5±4.7 , 98.0±23.8 , 20.6±6.3 cm y 13.7±3.1 cm. A multiple linear regression analysis was done to determine the equations, using BW, L and Z data as parameters. Coefficient of determination (R2) of the equations obtained to estimate water (g), CP (g), fat (g), ash (g) and GE (MJ) content were: 0.99, 0.99, 0.95, 0.96 and 0.98, and relative mean prediction error (RMPE) were: 4.20, 5.48, 21.9, 9.10 and 6.77%, respectively. When water content was expressed as percentage, the R2 and RMPE were 0.79 and 1.62%, respectively. When prediction of protein (%DM), fat (%DM), ash (%DM) and energy (kJ/100 g DM) content was done, R2 values were 0.68, 0.76, 0.66 and 0.82, and RMPE: 3.22, 10.5, 5.82 and 2.54%, respectively. Reactance was positively correlated with fat content (r = 0.24, P < 0.05) while resistance was positively correlated with water, ash and protein carcass content (r = 0.55, P < 0.001; r = 0.54, P < 0.001; r = 0.40, P < 0.005) and negatively correlated with fat and energy (r = -0.44 and r = -0.55; P < 0.001). Moreover, age was negatively correlated with water, ash and CP content (r = -0.97, r = -0.95 and r = -0.89, P < 0.0001) and positively correlated with fat and GE (r = 0.95 and r = 0.97; P < 0.0001). In the whole growing period (35-63 d), overall energy retention efficiency (ERE) and nitrogen retention efficiency (NRE) were studied. The ERE values were 20.4±7.29%, 21.0±4.18% and 20.8±2.79%, from 35 to 49, 49 to 63 and from 35 to 63 d, respectively. NRE was 46.9±11.7%, 34.5±7.32% and 39.1±3.23% for the same periods. Energy was retained in body tissues for growth with an efficiency of approximately 52.5% and efficiency of the energy for protein and fat retention was 33.3 and 69.9%, respectively. Efficiency of utilization of nitrogen for growth was near to 77%. This work shows that BIA it’s a non-invasive and good method to estimate in vivo carcass composition and nutrient retention of growing rabbits from 25 to 77 days of age. In the third study, two experiments were conducted to investigate the effect of the fat addition and source, on performance, mortality, nutrient retention, and the whole body and carcass chemical composition of growing rabbits from 34 to 63 d. In Exp. 1 three diets were arranged in a 3 x 2 factorial structure with the source of fat: Soybean oil (SBO), Soya Lecithin Oil (SLO) and Lard (L) and the dietary fat inclusion level (1.5 and 4%) as the main factors. Exp. 2 had also arranged as a 3 x 2 factorial design, but using SBO, Fish Oil (FO) and Palmkernel Oil (PKO) as fat sources, and included at the same levels than in Exp. 1. In both experiments 180 animals were allocated in individual cages (n=30) and 600 in collectives cages, in groups of 5 animals (n=20). Animals fed with 4% dietary fat level showed lower DFI and FCR than those fed diets with 1.5%. In collective housing of Exp. 1, DFI was a 4.8% higher in animals fed with diets containing lard than SBO (P = 0.036), being intermediate for diet with SLO. Inclusion of lard also tended to reduce mortality (P = 0.067) around 60% and 25% with respect SBO and SLO diets, respectively. Mortality increased with the greatest level of soya lecithin (14% vs. 1%, P < 0.01). In Exp. 2 a decrease of DFI (11%), BW at 63 d (4.8%) and DWG (7.8%) were observed with the inclusion of fish oil with respect the other two diets (P < 0.01). These last two traits impaired with the highest level of fish oil (5.6 and 9.5%, respectively, (P < 0.01)). Animals housed individually showed similar performance results. The inclusion of fish oil also tended to increase (P = 0.078) mortality (13.2%) with respect palmkernel oil (6.45%), being mortality of SBO intermediate (8.10%). Fat source and level did not affect the whole body or carcass chemical composition. An increase of the fat sources addition led to a decrease of the digestible nitrogen intake (DNi) (1.83 vs. 1.92 g/d; P = 0.068 in Exp. 1 and 1.79 vs. 1.95 g/d; P = 0.014 in Exp. 2). As the nitrogen retained (NR) in the carcass was similar for both fat levels (0.68 g/d (Exp. 1) and 0.71 g/d (Exp. 2)), the overall efficiency of N retention (NRE) increased with the highest level of fat, but only reached significant level in Exp. 1 (34.9 vs. 37.8%; P < 0.0001), while in Exp. 2 a tendency was found (36.2 vs. 38.0% in Exp. 2; P < 0.064). Consequently, nitrogen excretion in faeces was lower in animals fed with the highest level of fat (0.782 vs. 0.868 g/d; P = 0.0001 in Exp. 1, and 0.745 vs. 0.865 g/d; P < 0.0001 in Exp.2). The same effect was observed with the nitrogen excreted as urine (0.702 vs. 0.822 g/d; P < 0.0001 in Exp. 1 and 0.694 vs. 0.7999 g/d; P = 0.014 in Exp.2). Although there were not differences in ERE, the energy excreted in faeces decreased as fat level increased (142 vs. 156 Kcal/d; P = 0.0004 in Exp. 1 and 144 vs. 154 g/d; P = 0.050 in Exp. 2). In Exp. 1 the energy excreted as urine and heat production was significantly higher when animals were fed with the highest level of dietary fat (216 vs. 204 Kcal/d; P < 0.017). It can be concluded that lard and palmkernel oil can be considered as alternative sources to soybean oil due to the reduction of the mortality, without negative effects on performances or nutrient retention. Inclusion of fish impaired animals´ productivity and mortality. An increase of the dietary fat level improved FCR and overall protein efficiency retention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enhancing the quality of beef meat is an important goal in terms of improving both the nutritional value for the consumer and the commercial value for producers. The aim of this work was to study the effects of different vegetable oil supplements on growth performance, carcass quality and meat quality in beef steers reared under intensive conditions. A total of 240 Blonde D? Aquitaine steers (average BW = 293.7 ± 38.88 kg) were grouped into 24 batches (10 steers/batch) and were randomly assigned to one of the three dietary treatments (eight batches per treatment), each supplemented with either 4% hydrogenated palm oil (PALM) or fatty acids (FAs) from olive oil (OLI) or soybean oil (SOY). No differences in growth performance or carcass quality were observed. For the meat quality analysis, a steer was randomly selected from each batch and the 6th rib on the left half of the carcass was dissected. PALM meat had the highest percentage of 16:0 ( P< 0.05) and the lowest n-6/n-3 polyunsaturated fatty acids (PUFA) ratio ( P< 0.05), OLI had the highest content of t 11-18:1 ( P< 0.01) and c 9,t 11-18:2 ( P< 0.05) and SOY showed the lowest value of monounsaturated fatty acids (MUFA) ( P< 0.001), the highest percentage of PUFA ( P< 0.01) and a lower index of atherogenicity ( P = 0.07) than PALM. No significant differences in the sensory characteristics of the meat were noted. However, the results of the principal component analysis of meat characteristics enabled meat from those steers that consumed fatty acids from olive oil to be differentiated from that of steers that consumed soybean oil.