53 resultados para SISTEMA DE POSICIONAMIENTO GLOBAL

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

En una entidad corporativa es frecuente encontrar sistemas de control de acceso basados en credencial simple (usuario/contraseña). Tanto empleados como clientes utilizan estos credenciales para hacer uso de recursos disponibles en la red corporativa, pero el nivel de seguridad que ofrecen es muy bajo y sólo controlan el acceso a los recursos. Por el contrario, en entornos gubernamentales o sistemas críticos, se está difundiendo una tecnología que permite controlar el acceso al medio desde cualquier punto de la infraestructura (interno o externo), aplicando para ello estándares y normativas de seguridad, e igualmente haciendo uso de dispositivos criptográficos portables. Como resultado se obtiene un notable incremento del nivel de seguridad, que redunda en beneficio de todas las partes implicadas(trabajadores, clientes y organizaciones).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objetivo: comparar la carga fisiológica, indicada por la respuesta de la frecuencia cardiaca y las variables cinemáticas, durante ejercicios de SSG 4x4 y 7x7 en jugadores de fútbol profesionales de un equipo de primera división de la liga española. Material y métodos: veinte jugadores profesionales realizaron durante la temporada 2011/2012 dos tipos de ejercicios de juegos de posesión, 4x4 y 7x7, ambos en el mismo espacio de juego (40x25m.) y se analizó la respuesta de las variables cinemáticas y de frecuencia cardiaca medidas con sistema de posicionamiento global mediante una T de student para muestras relacionadas. Resultados: se obtiene una mayor distancia recorrida en el 4x4 vs 7x7 (p<0.01) y valores más altos de velocidad máxima en 7x7 vs 4x4 (p<0.01). En cuanto a la respuesta de la frecuencia cardiaca, a menor número de jugadores la intensidad se sitúa más por encima del 85% de la frecuencia cardiaca máxima (p<0.01), mientras que a mayor número de jugadores la intensidad predominante es entre el 65-85% (p<0.01). Conclusión: Los resultados de este estudio muestran que variables cinemáticas y frecuencia cardiaca presentan diferencias significativas en los ejercicios 4x4 vs 7x7 diseñados. Esto es una cuestión importante a tener en cuenta a la hora de planificar en función de los objetivos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La utilización de una cámara fotogramétrica digital redunda en el aumento demostrable de calidad radiométrica debido a la mejor relación señal/ruido y a los 12 bits de resolución radiométrica por cada pixel de la imagen. Simultáneamente se consigue un notable ahorro de tiempo y coste gracias a la eliminación de las fases de revelado y escaneado de la película y al aumento de las horas de vuelo por día. De otra parte, el sistema láser aerotransportado (LIDAR - Light Detection and Ranging) es un sistema con un elevado rendimiento y rentabilidad para la captura de datos de elevaciones para generar un modelo digital del terreno (MDT) y también de los objetos sobre el terreno, permitiendo así alcanzar alta precisión y densidad de información. Tanto el sistema LIDAR como el sistema de cámara fotogramétrica digital se combinan con otras técnicas bien conocidas: el sistema de posicionamiento global (GPS - Global Positioning System) y la orientación de la unidad de medida inercial (IMU - Inertial Measure Units), que permiten reducir o eliminar el apoyo de campo y realizar la orientación directa de los sensores utilizando datos de efemérides precisas de los satélites. Combinando estas tecnologías, se va a proponer y poner en práctica una metodología para generación automática de ortofotos en países de América del Sur. Analizando la precisión de dichas ortofotos comparándolas con fuente de mayor exactitud y con las especificaciones técnicas del Plan Nacional de Ortofotografía Aérea (PNOA) se determinará la viabilidad de que dicha metodología se pueda aplicar a zonas rurales. ABSTRACT Using a digital photogrammetric camera results in a demonstrable increase of the radiometric quality due to a better improved signal/noise ratio and the radiometric resolution of 12 bits per pixel of the image. Simultaneously a significant saving of time and money is achieved thanks to the elimination of the developing and film scanning stages, as well as to the increase of flying hours per day. On the other hand, airborne laser system Light Detection and Ranging (LIDAR) is a system with high performance and yield for the acquisition of elevation data in order to generate a digital terrain model (DTM), as well as objects on the ground which allows to achieve high accuracy and data density. Both the LIDAR and the digital photogrammetric camera system are combined with other well known techniques: global positioning system (GPS) and inertial measurement unit (IMU) orientation, which are currently in a mature evolutionary stage, which allow to reduce and/or remove field support and perform a direct guidance of sensors using specific historic data from the satellites. By combining these technologies, a methodology for automatic generation of orthophotos in South American countries will be proposed and implemented. Analyzing the accuracy of these orthophotos comparing them with more accurate sources and technical specifications of the National Aerial Orthophoto (PNOA), the viability of whether this methodology should be applied to rural areas, will be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se está produciendo en la geodesia un cambio de paradigma en la concepción de los modelos digitales del terreno, pasando de diseñar el modelo con el menor número de puntos posibles a hacerlo con cientos de miles o millones de puntos. Este cambio ha sido consecuencia de la introducción de nuevas tecnologías como el escáner láser, la interferometría radar y el tratamiento de imágenes. La rápida aceptación de estas nuevas tecnologías se debe principalmente a la gran velocidad en la toma de datos, a la accesibilidad por no precisar de prisma y al alto grado de detalle de los modelos. Los métodos topográficos clásicos se basan en medidas discretas de puntos que considerados en su conjunto forman un modelo; su precisión se deriva de la precisión en la toma singular de estos puntos. La tecnología láser escáner terrestre (TLS) supone una aproximación diferente para la generación del modelo del objeto observado. Las nubes de puntos, producto del escaneo con TLS, pasan a ser tratadas en su conjunto mediante análisis de áreas, de forma que ahora el modelo final no es el resultado de una agregación de puntos sino la de la mejor superficie que se adapta a las nubes de puntos. Al comparar precisiones en la captura de puntos singulares realizados con métodos taquimétricos y equipos TLS la inferioridad de estos últimos es clara; sin embargo es en el tratamiento de las nubes de puntos, con los métodos de análisis basados en áreas, se han obtenido precisiones aceptables y se ha podido considerar plenamente la incorporación de esta tecnología en estudios de deformaciones y movimientos de estructuras. Entre las aplicaciones del TLS destacan las de registro del patrimonio, registro de las fases en la construcción de plantas industriales y estructuras, atestados de accidentes y monitorización de movimientos del terreno y deformaciones de estructuras. En la auscultación de presas, comparado con la monitorización de puntos concretos dentro, en coronación o en el paramento de la presa, disponer de un modelo continuo del paramento aguas abajo de la presa abre la posibilidad de introducir los métodos de análisis de deformaciones de superficies y la creación de modelos de comportamiento que mejoren la comprensión y previsión de sus movimientos. No obstante, la aplicación de la tecnología TLS en la auscultación de presas debe considerarse como un método complementario a los existentes. Mientras que los péndulos y la reciente técnica basada en el sistema de posicionamiento global diferencial (DGPS) dan una información continua de los movimientos de determinados puntos de la presa, el TLS permite ver la evolución estacional y detectar posibles zonas problemáticas en todo el paramento. En este trabajo se analizan las características de la tecnología TLS y los parámetros que intervienen en la precisión final de los escaneos. Se constata la necesidad de utilizar equipos basados en la medida directa del tiempo de vuelo, también llamados pulsados, para distancias entre 100 m y 300 m Se estudia la aplicación del TLS a la modelización de estructuras y paramentos verticales. Se analizan los factores que influyen en la precisión final, como el registro de nubes, tipo de dianas y el efecto conjunto del ángulo y la distancia de escaneo. Finalmente, se hace una comparación de los movimientos dados por los péndulos directos de una presa con los obtenidos del análisis de las nubes de puntos correspondientes a varias campañas de escaneos de la misma presa. Se propone y valida el empleo de gráficos patrón para relacionar las variables precisión o exactitud con los factores distancia y ángulo de escaneo en el diseño de trabajos de campo. Se expone su aplicación en la preparación del trabajo de campo para la realización de una campaña de escaneos dirigida al control de movimientos de una presa y se realizan recomendaciones para la aplicación de la técnica TLS a grandes estructuras. Se ha elaborado el gráfico patrón de un equipo TLS concreto de alcance medio. Para ello se hicieron dos ensayos de campo en condiciones reales de trabajo, realizando escaneos en todo el rango de distancias y ángulos de escaneo del equipo. Se analizan dos métodos para obtener la precisión en la modelización de paramentos y la detección de movimientos de estos: el método del “plano de mejor ajuste” y el método de la “deformación simulada”. Por último, se presentan los resultados de la comparación de los movimientos estacionales de una presa arco-gravedad entre los registrados con los péndulos directos y los obtenidos a partir de los escaneos realizados con un TLS. Los resultados muestran diferencias de milímetros, siendo el mejor de ellos del orden de un milímetro. Se explica la metodología utilizada y se hacen consideraciones respecto a la densidad de puntos de las nubes y al tamaño de las mallas de triángulos. A shift of paradigm in the conception of the survey digital models is taking place in geodesy, moving from designing a model with the fewer possible number of points to models of hundreds of thousand or million points. This change has happened because of the introduction of new technologies like the laser scanner, the interferometry radar and the processing of images. The fast acceptance of these new technologies has been due mainly to the great speed getting the data, to the accessibility as reflectorless technique, and to the high degree of detail of the models. Classic survey methods are based on discreet measures of points that, considered them as a whole, form a model; the precision of the model is then derived from the precision measuring the single points. The terrestrial laser scanner (TLS) technology supposes a different approach to the model generation of the observed object. Point cloud, the result of a TLS scan, must be treated as a whole, by means of area-based analysis; so, the final model is not an aggregation of points but the one resulting from the best surface that fits with the point cloud. Comparing precisions between the one resulting from the capture of singular points made with tachometric measurement methods and with TLS equipment, the inferiority of this last one is clear; but it is in the treatment of the point clouds, using area-based analysis methods, when acceptable precisions have been obtained and it has been possible to consider the incorporation of this technology for monitoring structures deformations. Among TLS applications it have to be emphasized those of registry of the cultural heritage, stages registry during construction of industrial plants and structures, police statement of accidents and monitorization of land movements and structures deformations. Compared with the classical dam monitoring, approach based on the registry of a set of points, the fact having a continuous model of the downstream face allows the possibility of introducing deformation analysis methods and behavior models that would improve the understanding and forecast of dam movements. However, the application of TLS technology for dam monitoring must be considered like a complementary method with the existing ones. Pendulums and recently the differential global positioning system (DGPS) give a continuous information of the movements of certain points of the dam, whereas TLS allows following its seasonal evolution and to detect damaged zones of the dam. A review of the TLS technology characteristics and the factors affecting the final precision of the scanning data is done. It is stated the need of selecting TLS based on the direct time of flight method, also called pulsed, for scanning distances between 100m and 300m. Modelling of structures and vertical walls is studied. Factors that influence in the final precision, like the registry of point clouds, target types, and the combined effect of scanning distance and angle of incidence are analyzed. Finally, a comparison among the movements given by the direct pendulums of a dam and the ones obtained from the analysis of point clouds is done. A new approach to obtain a complete map-type plot of the precisions of TLS equipment based on the direct measurement of time of flight method at midrange distances is presented. Test were developed in field-like conditions, similar to dam monitoring and other civil engineering works. Taking advantage of graphic semiological techniques, a “distance - angle of incidence” map based was designed and evaluated for field-like conditions. A map-type plot was designed combining isolines with sized and grey scale points, proportional to the precision values they represent. Precisions under different field conditions were compared with specifications. For this purpose, point clouds were evaluated under two approaches: the standar "plane-of-best-fit" and the proposed "simulated deformation”, that showed improved performance. These results lead to a discussion and recommendations about optimal TLS operation in civil engineering works. Finally, results of the comparison of seasonal movements of an arc-gravity dam between the registered by the direct pendulums ant the obtained from the TLS scans, are shown. The results show differences of millimeters, being the best around one millimeter. The used methodology is explained and considerations with respect to the point cloud density and to the size of triangular meshes are done.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El estudio de viabilidad realizado en este proyecto fin de carrera constituye uno más de los muchos que ya se han elaborado para adaptar la herramienta DHIS2 al contexto concreto de un país, y se apoya en toda la experiencia previa acumulada a lo largo de los años en países de Asia, África y, más recientemente, América Latina. DHIS2 es software libre y cuenta con una comunidad de usuarios muy activa repartida por todo el mundo. El objetivo de este proyecto es la realización de un estudio de viabilidad técnica e institucional para implementar el software DHIS2 como sistema de información sanitaria de la Dirección General de Vigilancia en Salud de Paraguay. Para realizar el estudio primero se analizará en profundidad la herramienta DHIS2 para conocer lo que se puede hacer y lo que no; luego se estudiará el sistema de información utilizado actualmente en la DGVS identificando los flujos de datos; y finalmente se implementará una demostración de DHIS2 adaptada a la DGVS. El sistema de información de la DGVS está basado en el envío de fichas de notificación, las cuales son almacenadas y analizadas mediante hojas de cálculo MS Excel. El uso de estas hojas como base de datos puede provocar problemas de inconsistencia y duplicidad en los datos, y se vuelve inmanejable cuando el volumen es muy grande. Por otro lado, rellenar las fichas de notificación de manera manual genera un gran número de errores debido a letra ilegible, problema considerado como uno de los principales por el personal de la DGVS. En este contexto, un sistema de información como DHIS2 podría mejorar y hacer más eficiente todo el proceso de recogida, almacenamiento, análisis y presentación de los datos. El análisis del flujo de datos se realiza mediante la elección de tres fichas de notificación, las cuales servirán de elemento conductor a lo largo de todo el recorrido: Síndromes Febriles Agudos e Infecciones Respiratorias Agudas como fichas individuales y la Planilla Semanal de Notificación Obligatoria como ficha agregada. A continuación se configura DHIS2 para implementar una demostración que incluya las tres fichas anteriores, la cual será utilizada para realizar pruebas de funcionamiento y organizar talleres de formación con el personal de la DGVS. Luego se comprueba que DHIS2 cumple las normas establecidas por el MSPyBS para poder integrarse dentro del sistema de información global y ser compatible con el resto de subsistemas que componen el MSPyBS. También se consigue la integración a DHIS2 del histórico de datos de la DGVS. La valoración general de DHIS2 como sistema de información para la DGVS es muy positiva, si bien se han detectado dos condicionantes importantes que marcarán su éxito. Desde el punto de vista técnico, la baja conectividad a Internet existente en Paraguay puede dificultar su correcto funcionamiento. La buena noticia es que el Ministerio, por un lado, prevé mejorar el acceso en el corto plazo y DHIS2, por otro, planea potenciar el soporte para trabajar con cortes en la conexión. Desde le punto de vista institucional, todo quedará condicionado a la voluntad de la dirección de la DGVS para dar apoyo y favorecer el uso de esta aplicación.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La radioterapia intraoperatoria (RIO) con electrones es una modalidad de tratamiento contra el cáncer que combina cirugía y radiación terapéutica aplicada a un tumor sin resecar o al lecho tumoral después de una resección. Este tratamiento se planifica con una imagen preoperatoria del paciente. Sería adecuado incluir en la planificación información acerca de la superficie del lecho tumoral ya que la acumulación de fluidos, las superficies cóncavas y las irregularidades en la superficie irradiada modifican significativamente la distribución de la dosis. Existen diversos escáneres de superficie pero el que mejor se podría adaptar al entorno de la RIO sería el que utiliza un dispositivo de holografía conoscópica (ConoProbe, Optimet Metrology Ltd.) ya que permite realizar medidas de distancias en cavidades, en superficies reflectantes y en tejidos biológicos. La holografía conoscópica es una técnica de interferometría basada en la propagación de la luz en cristales birrefringentes. Para obtener las coordenadas 3D de los puntos de la superficie barridos por el dispositivo ConoProbe es necesario utilizar un sistema de posicionamiento como el que se utiliza en el quirófano de la RIO para localizar el aplicador de RIO con el que se conduce el haz de electrones (sistema de posicionamiento óptico OptiTrack, NaturalPoint Inc.). El objetivo de este proyecto fin de grado consistió en desarrollar un sistema de escaneado de superficies y realizar diversas pruebas para evaluar la calidad del sistema desarrollado y su viabilidad en el entorno de la RIO. Para integrar la información del dispositivo ConoProbe y del sistema de posicionamiento OptiTrack se realizó una calibración temporal para sincronizar los datos de ambos dispositivos utilizando la función de correlación cruzada y una calibración espacial para transformar la distancia medida por el dispositivo ConoProbe en coordenadas 3D de la superficie del objeto escaneado. Se plantearon dos métodos para realizar esta calibración espacial, por ajuste de pares de puntos y por ajuste a un plano. La calibración espacial elegida fue la primera ya que presentaba menor error. El error del sistema es inferior a 2 mm siendo un error aceptable en el entorno de la RIO. Diferentes pruebas con diversos materiales y formas han permitido comprobar que el sistema de escaneado funciona incluso con líquidos. En un procedimiento de RIO, el escaneado de la superficie se haría después de colocar el aplicador. En este caso, se puede obtener también la superficie del objeto alrededor de centro del aplicador colocando verticalmente el dispositivo ConoProbe. Es complicado obtener la superficie próxima a las paredes del aplicador debido a que estas afectan al cono de luz reflejado. De todas formas, el sistema de escaneado desarrollado proporciona más información en este escenario que un sistema de escáner 3D de luz estructurada (no se podría escanear nada de la superficie con el aplicador colocado). Esta información es útil para la estimación de la distribución de la dosis real que recibe un paciente en un procedimiento de RIO.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En el ámbito de la robótica de servicio, actualmente no existe una solución automatizada para la inspección ultrasónica de las partes de material compuesto de una aeronave durante las operaciones de mantenimiento que realiza la aerolínea. El desarrollo de las nuevas técnicas de acoplamiento acústico en seco en el método de inspección no destructiva por ultrasonidos, está conduciendo a posibilitar su uso con soluciones de menor coste respecto a las técnicas tradicionales, sin perder eficacia para detectar las deficiencias en las estructuras de material compuesto. Aunque existen aplicaciones de esta técnica con soluciones manuales, utilizadas en las fases de desarrollo y fabricación del material compuesto, o con soluciones por control remoto en sectores diferentes al aeronáutico para componentes metálicos, sin embargo, no existen con soluciones automatizadas para la inspección no destructiva por ultrasonidos de las zonas del avión fabricadas en material compuesto una vez la aeronave ha sido entregada a la aerolínea. El objetivo de este trabajo fin de master es evaluar el sistema de localización, basado en visión por ordenador, de una solución robotizada aplicada la inspección ultrasónica estructural de aeronaves en servicio por parte de las propias aerolíneas, utilizando las nuevas técnicas de acoplamiento acústico en seco, buscando la ventaja de reducir los tiempos y los costes en las operaciones de mantenimiento. Se propone como solución un robot móvil autónomo de pequeño tamaño, con control de posición global basado en técnicas de SLAM Visual Monocular, utilizando marcadores visuales externos para delimitar el área de inspección. Se ha supuesto la inspección de elementos de la aeronave cuya superficie se pueda considerar plana y horizontal, como son las superficies del estabilizador horizontal o del ala. Este supuesto es completamente aceptable en zonas acotadas de estos componentes, y de cara al objetivo del proyecto, no le resta generalidad. El robot móvil propuesto es un vehículo terrestre triciclo, de dos grados de libertad, con un sistema de visión monocular completo embarcado, incluyendo el hardware de procesamiento de visión y control de trayectoria. Las dos ruedas delanteras son motrices y la tercera rueda, loca, sirve únicamente de apoyo. La dirección, de tipo diferencial, permite al robot girar sin necesidad de desplazamiento, al conseguirse por diferencia de velocidad entre la rueda motriz derecha e izquierda. El sistema de inspección ultrasónica embarcado está compuesto por el hardware de procesamiento y registro de señal, y una rueda-sensor situada coaxialmente al eje de las ruedas motrices, y centrada entre estas, de modo que la medida de inspección se realiza en el centro de rotación del robot. El control visual propuesto se realiza mediante una estrategia “ver y mover” basada en posición, ejecutándose de forma secuencial la extracción de características visuales de la imagen, el cálculo de la localización global del robot mediante SLAM visual y el movimiento de éste mediante un algoritmo de control de posición-orientación respecto a referencias de paso de la trayectoria. La trayectoria se planifica a partir del mapa de marcas visuales que delimitan el área de inspección, proporcionado también por SLAM visual. Para validar la solución propuesta se ha optado por desarrollar un prototipo físico tanto del robot como de los marcadores visuales externos, a los que se someterán a una prueba de validación como alternativa a utilizar un entorno simulado por software, consistente en el reconocimiento del área de trabajo, planeamiento de la trayectoria y recorrido de la misma, de forma autónoma, registrando el posicionamiento real del robot móvil junto con el posicionamiento proporcionado por el sistema de localización SLAM. El motivo de optar por un prototipo es validar la solución ante efectos físicos que son muy complicados de modelar en un entorno de simulación, derivados de las limitaciones constructivas de los sistemas de visión, como distorsiones ópticas o saturación de los sensores, y de las limitaciones constructivas de la mecánica del robot móvil que afectan al modelo cinemático, como son el deslizamiento de las ruedas o la fluctuación de potencia de los motores eléctricos. El prototipo de marcador visual externo utilizado para la prueba de validación, ha sido un símbolo plano vertical, en blanco y negro, que consta de un borde negro rectangular dentro del cual se incluye una serie de marcas cuadradas de color negro, cuya disposición es diferente para cada marcador, lo que permite su identificación. El prototipo de robot móvil utilizado para la prueba de validación, ha sido denominado VINDUSTOR: “VIsual controlled Non-Destructive UltraSonic inspecTOR”. Su estructura mecánica ha sido desarrollada a partir de la plataforma comercial de robótica educacional LEGO© MINDSTORMS NXT 2.0, que incluye los dos servomotores utilizados para accionar las dos ruedas motrices, su controlador, las ruedas delanteras y la rueda loca trasera. La estructura mecánica ha sido especialmente diseñada con piezas LEGO© para embarcar un ordenador PC portátil de tamaño pequeño, utilizado para el procesamiento visual y el control de movimiento, y el sistema de captación visual compuesto por dos cámaras web de bajo coste, colocadas una en posición delantera y otra en posición trasera, con el fin de aumentar el ángulo de visión. El peso total del prototipo no alcanza los 2 Kg, siendo sus dimensiones máximas 20 cm de largo, 25 cm de ancho y 26 cm de alto. El prototipo de robot móvil dispone de un control de tipo visual. La estrategia de control es de tipo “ver y mover” dinámico, en la que se realiza un bucle externo, de forma secuencial, la extracción de características en la imagen, la estimación de la localización del robot y el cálculo del control, y en un bucle interno, el control de los servomotores. La estrategia de adquisición de imágenes está basada en un sistema monocular de cámaras embarcadas. La estrategia de interpretación de imágenes está basada en posición tridimensional, en la que los objetivos de control se definen en el espacio de trabajo y no en la imagen. La ley de control está basada en postura, relacionando la velocidad del robot con el error en la posición respecto a las referencias de paso de una trayectoria. La trayectoria es generada a partir del mapa de marcadores visuales externo. En todo momento, la localización del robot respecto a un sistema de referencia externo y el mapa de marcadores, es realizado mediante técnicas de SLAM visual. La auto-localización de un robot móvil dentro de un entorno desconocido a priori constituye uno de los desafíos más importantes en la robótica, habiéndose conseguido su solución en las últimas décadas, con una formulación como un problema numérico y con implementaciones en casos que van desde robots aéreos a robots en entornos cerrados, existiendo numerosos estudios y publicaciones al respecto. La primera técnica de localización y mapeo simultáneo SLAM fue desarrollada en 1989, más como un concepto que como un algoritmo único, ya que su objetivo es gestionar un mapa del entorno constituido por posiciones de puntos de interés, obtenidos únicamente a partir de los datos de localización recogidos por los sensores, y obtener la pose del robot respecto al entorno, en un proceso limitado por el ruido de los sensores, tanto en la detección del entorno como en la odometría del robot, empleándose técnicas probabilísticas aumentar la precisión en la estimación. Atendiendo al algoritmo probabilístico utilizado, las técnicas SLAM pueden clasificarse en las basadas en Filtros de Kalman, en Filtros de Partículas y en su combinación. Los Filtros de Kalman consideran distribuciones de probabilidad gaussiana tanto en las medidas de los sensores como en las medidas indirectas obtenidas a partir de ellos, de modo que utilizan un conjunto de ecuaciones para estimar el estado de un proceso, minimizando la media del error cuadrático, incluso cuando el modelo del sistema no se conoce con precisión, siendo el más utilizado el Filtro de Kalman Extendido a modelos nolineales. Los Filtros de Partículas consideran distribuciones de probabilidad en las medidas de los sensores sin modelo, representándose mediante un conjunto de muestras aleatorias o partículas, de modo que utilizan el método Montecarlo secuencial para estimar la pose del robot y el mapa a partir de ellas de forma iterativa, siendo el más utilizado el Rao-Backwell, que permite obtener un estimador optimizado mediante el criterio del error cuadrático medio. Entre las técnicas que combinan ambos tipos de filtros probabilísticos destaca el FastSLAM, un algoritmo que estima la localización del robot con un Filtro de Partículas y la posición de los puntos de interés mediante el Filtro de Kalman Extendido. Las técnicas SLAM puede utilizar cualquier tipo de sensor que proporcionen información de localización, como Laser, Sonar, Ultrasonidos o Visión. Los sensores basados en visión pueden obtener las medidas de distancia mediante técnicas de visión estereoscópica o mediante técnica de visión monocular. La utilización de sensores basados en visión tiene como ventajas, proporcionar información global a través de las imágenes, no sólo medida de distancia, sino también información adicional como texturas o patrones, y la asequibilidad del hardware frente a otros sensores. Sin embargo, su principal inconveniente es el alto coste computacional necesario para los complejos algoritmos de detección, descripción, correspondencia y reconstrucción tridimensional, requeridos para la obtención de la medida de distancia a los múltiples puntos de interés procesados. Los principales inconvenientes del SLAM son el alto coste computacional, cuando se utiliza un número elevado de características visuales, y su consistencia ante errores, derivados del ruido en los sensores, del modelado y del tratamiento de las distribuciones de probabilidad, que pueden producir el fallo del filtro. Dado que el SLAM basado en el Filtro de Kalman Extendido es una las técnicas más utilizadas, se ha seleccionado en primer lugar cómo solución para el sistema de localización del robot, realizando una implementación en la que las medidas de los sensores y el movimiento del robot son simulados por software, antes de materializarla en el prototipo. La simulación se ha realizado considerando una disposición de ocho marcadores visuales que en todo momento proporcionan ocho medidas de distancia con ruido aleatorio equivalente al error del sensor visual real, y un modelo cinemático del robot que considera deslizamiento de las ruedas mediante ruido aleatorio. Durante la simulación, los resultados han mostrado que la localización estimada por el algoritmo SLAM-EKF presenta tendencia a corregir la localización obtenida mediante la odometría, pero no en suficiente cuantía para dar un resultado aceptable, sin conseguir una convergencia a una solución suficientemente cercana a la localización simulada del robot y los marcadores. La conclusión obtenida tras la simulación ha sido que el algoritmo SLAMEKF proporciona inadecuada convergencia de precisión, debido a la alta incertidumbre en la odometría y a la alta incertidumbre en las medidas de posición de los marcadores proporcionadas por el sensor visual. Tras estos resultados, se ha buscado una solución alternativa. Partiendo de la idea subyacente en los Filtros de Partículas, se ha planteado sustituir las distribuciones de probabilidad gaussianas consideradas por el Filtro de Kalman Extendido, por distribuciones equi-probables que derivan en funciones binarias que representan intervalos de probabilidad no-nula. La aplicación de Filtro supone la superposición de todas las funciones de probabilidad no-nula disponibles, de modo que el resultado es el intervalo donde existe alguna probabilidad de la medida. Cómo la efectividad de este filtro aumenta con el número disponible de medidas, se ha propuesto obtener una medida de la localización del robot a partir de cada pareja de medidas disponibles de posición de los marcadores, haciendo uso de la Trilateración. SLAM mediante Trilateración Estadística (SLAM-ST) es como se ha denominado a esta solución propuesta en este trabajo fin de master. Al igual que con el algoritmo SLAM-EKF, ha sido realizada una implementación del algoritmo SLAM-ST en la que las medidas de los sensores y el movimiento del robot son simulados, antes de materializarla en el prototipo. La simulación se ha realizado en las mismas condiciones y con las mismas consideraciones, para comparar con los resultados obtenidos con el algoritmo SLAM-EKF. Durante la simulación, los resultados han mostrado que la localización estimada por el algoritmo SLAM-ST presenta mayor tendencia que el algoritmo SLAM-EKF a corregir la localización obtenida mediante la odometría, de modo que se alcanza una convergencia a una solución suficientemente cercana a la localización simulada del robot y los marcadores. Las conclusiones obtenidas tras la simulación han sido que, en condiciones de alta incertidumbre en la odometría y en la medida de posición de los marcadores respecto al robot, el algoritmo SLAM-ST proporciona mejores resultado que el algoritmo SLAM-EKF, y que la precisión conseguida sugiere la viabilidad de la implementación en el prototipo. La implementación del algoritmo SLAM-ST en el prototipo ha sido realizada en conjunción con la implementación del Sensor Visual Monocular, el Modelo de Odometría y el Control de Trayectoria. El Sensor Visual Monocular es el elemento del sistema SLAM encargado de proporcionar la posición con respecto al robot de los marcadores visuales externos, a partir de las imágenes obtenidas por las cámaras, mediante técnicas de procesamiento de imagen que permiten detectar e identificar los marcadores visuales que se hallen presentes en la imagen capturada, así como obtener las características visuales a partir de las cuales inferir la posición del marcador visual respecto a la cámara, mediante reconstrucción tridimensional monocular, basada en el conocimiento a-priori del tamaño real del mismo. Para tal fin, se ha utilizado el modelo matemático de cámara pin-hole, y se ha considerado las distorsiones de la cámara real mediante la calibración del sensor, en vez de utilizar la calibración de la imagen, tras comprobar el alto coste computacional que requiere la corrección de la imagen capturada, de modo que la corrección se realiza sobre las características visuales extraídas y no sobre la imagen completa. El Modelo de Odometría es el elemento del sistema SLAM encargado de proporcionar la estimación de movimiento incremental del robot en base a la información proporcionada por los sensores de odometría, típicamente los encoders de las ruedas. Por la tipología del robot utilizado en el prototipo, se ha utilizado un modelo cinemático de un robot tipo uniciclo y un modelo de odometría de un robot móvil de dos ruedas tipo diferencial, en el que la traslación y la rotación se determinan por la diferencia de velocidad de las ruedas motrices, considerando que no existe deslizamiento entre la rueda y el suelo. Sin embargo, el deslizamiento en las ruedas aparece como consecuencia de causas externas que se producen de manera inconstante durante el movimiento del robot que provocan insuficiente contacto de la rueda con el suelo por efectos dinámicos. Para mantener la validez del modelo de odometría en todas estas situaciones que producen deslizamiento, se ha considerado un modelo de incertidumbre basado en un ensayo representativo de las situaciones más habituales de deslizamiento. El Control de Trayectoria es el elemento encargado de proporcionar las órdenes de movimiento al robot móvil. El control implementado en el prototipo está basado en postura, utilizando como entrada la desviación en la posición y orientación respecto a una referencia de paso de la trayectoria. La localización del robot utilizada es siempre de la estimación proporcionada por el sistema SLAM y la trayectoria es planeada a partir del conocimiento del mapa de marcas visuales que limitan el espacio de trabajo, mapa proporcionado por el sistema SLAM. Las limitaciones del sensor visual embarcado en la velocidad de estabilización de la imagen capturada han conducido a que el control se haya implementado con la estrategia “mirar parado”, en la que la captación de imágenes se realiza en posición estática. Para evaluar el sistema de localización basado en visión del prototipo, se ha diseñado una prueba de validación que obtenga una medida cuantitativa de su comportamiento. La prueba consiste en la realización de forma completamente autónoma de la detección del espacio de trabajo, la planificación de una trayectoria de inspección que lo transite completamente, y la ejecución del recorrido de la misma, registrando simultáneamente la localización real del robot móvil junto con la localización proporcionada por el sistema SLAM Visual Monocular. Se han realizado varias ejecuciones de prueba de validación, siempre en las mismas condiciones iniciales de posición de marcadores visuales y localización del robot móvil, comprobando la repetitividad del ensayo. Los resultados presentados corresponden a la consideración de las medidas más pesimistas obtenidas tras el procesamiento del conjunto de medidas de todos los ensayos. Los resultados revelan que, considerando todo el espacio de trabajo, el error de posición, diferencia entre los valores de proporcionados por el sistema SLAM y los valores medidos de posición real, se encuentra en el entorno de la veintena de centímetros. Además, los valores de incertidumbre proporcionados por el sistema SLAM son, en todos los casos, superiores a este error. Estos resultados conducen a concluir que el sistema de localización basado en SLAM Visual, mediante un algoritmo de Trilateración Estadística, usando un sensor visual monocular y marcadores visuales externos, funciona, proporcionando la localización del robot móvil con respecto al sistema de referencia global inicial y un mapa de su situación de los marcadores visuales, con precisión limitada, pero con incertidumbre conservativa, al estar en todo momento el error real de localización por debajo del error estimado. Sin embargo, los resultados de precisión del sistema de localización no son suficientemente altos para cumplir con los requerimientos como solución robotizada aplicada a la inspección ultrasónica estructural de aeronaves en servicio. En este sentido, los resultados sugieren que la posible continuación de este trabajo en el futuro debe centrarse en la mejora de la precisión de localización del robot móvil, con líneas de trabajo encaminadas a mejorar el comportamiento dinámico del prototipo, en mejorar la precisión de las medidas de posición proporcionadas por el sensor visual y en optimizar el resultado del algoritmo SLAM. Algunas de estas líneas futuras podrían ser la utilización de plataformas robóticas de desarrollo alternativas, la exploración de técnicas de visión por computador complementarias, como la odometría visual, la visión omnidireccional, la visión estereoscópica o las técnicas de reconstrucción tridimensional densa a partir de captura monocular, y el análisis de algoritmos SLAM alternativos condicionado a disponer de una sustancial mejora de precisión en el modelo de odometría y en las medidas de posición de los marcadores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El Instituto Geográfico Nacional, por medio del Área de Geodesia, está llevando a cabo el establecimiento de una Red de Estaciones Permanentes GPS que permitan obtener coordenadas muy precisas, así como sus campos de velocidades en un Sistema de Referencia Global (ITRFxx). Dichas estaciones pertenencen a la Red de Estaciones Permanentes de EUREF (EUropean REference Framen) y constituyen el órden cero de la Geodesia Española.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La visión por computador es una parte de la inteligencia artificial que tiene una aplicación industrial muy amplia, desde la detección de piezas defectuosas al control de movimientos de los robots para la fabricación de piezas. En el ámbito aeronáutico, la visión por computador es una herramienta de ayuda a la navegación, pudiendo usarse como complemento al sistema de navegación inercial, como complemento a un sistema de posicionamiento como el GPS, o como sistema de navegación visual autónomo.Este proyecto establece una primera aproximación a los sistemas de visión articial y sus aplicaciones en aeronaves no tripuladas. La aplicación que se desarrollará será la de apoyo al sistema de navegación, mediante una herramienta que a través de las imágenes capturadas por una cámara embarcada, dé la orden al autopiloto para posicionar el aparato frente la pista en la maniobra de aterrizaje.Para poder realizar ese cometido, hay que estudiar las posibilidades y los desarrollos que el mercado ofrece en este campo, así como los esfuerzos investigadores de los diferentes centros de investigación, donde se publican multitud soluciones de visión por computador para la navegación de diferentes vehículos no tripulados, en diferentes entornos. Ese estudio llevará a cabo el proceso de la aplicación de un sistema de visión articial desde su inicio. Para ello, lo primero que se realizará será definir una solución viable dentro de las posibilidades que la literatura permita conocer. Además, se necesitará realizar un estudio de las necesidades del sistema, tanto de hardware como de software, y acudir al mercado para adquirir la opción más adecuada que satisfaga esas necesidades. El siguiente paso es el planteamiento y desarrollo de la aplicación, mediante la defnición de un algoritmo y un programa informático que aplique el algoritmo y analizar los resultados de los ensayos y las simulaciones de la solución. Además, se estudiará una propuesta de integración en una aeronave y la interfaz de la estación de tierra que debe controlar el proceso. Para finalizar, se exponen las conclusiones y los trabajos futuros para continuar la labor de desarrollo de este proyecto.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El Instituto Geográfico Nacional, por medio del Área de Geodesia, está llevando a cabo el establecimiento de una Red de Estaciones Permanentes GPS que permitan obtener coordenadas muy precisas, así como sus campos de velocidades en un Sistema de Referencia Global (ITRFxx). Dichas estaciones pertenecen a la Red de Estaciones Permanentes de EUREF (EUropean REference Frame) y constituyen el orden cero de la Geodesia Española.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabajo presenta un sistema de posicionamiento local (LPS) para personas en entornos interiores basado en la combinación de tecnología RFID activa y una metodología bayesiana de estimación de la posición a partir de la fuerza de las señales de RF recibidas. La complejidad inherente a la propagación de las ondas de RF en entornos interiores causa grandes fluctuaciones en el nivel de la fuerza de la señal, por lo que las técnicas bayesianas, de naturaleza estadística, tienen ventajas significativas frente a métodos de posicionamiento más comunes, como multilateración, minimización cuadrática o localización por fingerprinting. En la validación experimental del sistema RFID-LPS se consigue un error de posicionamiento medio de 2.10 m (mediana de 1.84 m y 3.89 m en el 90% de los casos), en un área abarcada de 475 m2 con 29 tags RFID, y con velocidades de desplazamiento de hasta 0.5 m/s, prestaciones iguales o superiores a otros sistemas del estado del arte. Aunque existen precedentes en Robótica móvil, la combinación de métodos bayesianos y tecnología RFID activa usada en este trabajo es original en el marco de los sistemas de localización de personas, cuyos desplazamientos son generalmente más impredecibles que los de los robots. Otros aspectos novedosos investigados son la posibilidad de alcanzar una estimación conjunta de posición y orientación de un usuario con dos métodos distintos (uso de antenas directivas y aprovechamiento de la atenuación de la señal de RF por el cuerpo humano), la escalabilidad del sistema RFID-LPS, y la estimación de la posición por técnicas bayesianas en sistemas simples que pueden detectar los marcadores RFID, pero no medir su fuerza de señal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La tecnología de múltiples antenas ha evolucionado para dar soporte a los actuales y futuros sistemas de comunicaciones inalámbricas en su afán por proporcionar la calidad de señal y las altas tasas de transmisión que demandan los nuevos servicios de voz, datos y multimedia. Sin embargo, es fundamental comprender las características espaciales del canal radio, ya que son las características del propio canal lo que limita en gran medida las prestaciones de los sistemas de comunicación actuales. Por ello surge la necesidad de estudiar la estructura espacial del canal de propagación para poder diseñar, evaluar e implementar de forma más eficiente tecnologías multiantena en los actuales y futuros sistemas de comunicación inalámbrica. Las tecnologías multiantena denominadas antenas inteligentes y MIMO han generado un gran interés en el área de comunicaciones inalámbricas, por ejemplo los sistemas de telefonía celular o más recientemente en las redes WLAN (Wireless Local Area Network), principalmente por la mejora que proporcionan en la calidad de las señales y en la tasa de transmisión de datos, respectivamente. Las ventajas de estas tecnologías se fundamentan en el uso de la dimensión espacial para obtener ganancia por diversidad espacial, como ya sucediera con las tecnologías FDMA (Frequency Division Multiplexing Access), TDMA (Time Division Multiplexing Access) y CDMA (Code Division Multiplexing Access) para obtener diversidad en las dimensiones de frecuencia, tiempo y código, respectivamente. Esta Tesis se centra en estudiar las características espaciales del canal con sistemas de múltiples antenas mediante la estimación de los perfiles de ángulos de llegada (DoA, Direction-of- Arrival) considerando esquemas de diversidad en espacio, polarización y frecuencia. Como primer paso se realiza una revisión de los sistemas con antenas inteligentes y los sistemas MIMO, describiendo con detalle la base matemática que sustenta las prestaciones ofrecidas por estos sistemas. Posteriormente se aportan distintos estudios sobre la estimación de los perfiles de DoA de canales radio con sistemas multiantena evaluando distintos aspectos de antenas, algoritmos de estimación, esquemas de polarización, campo lejano y campo cercano de las fuentes. Así mismo, se presenta un prototipo de medida MIMO-OFDM-SPAA3D en la banda ISM (Industrial, Scientific and Medical) de 2,45 Ghz, el cual está preparado para caracterizar experimentalmente el rendimiento de los sistemas MIMO, y para caracterizar espacialmente canales de propagación, considerando los esquemas de diversidad espacial, por polarización y frecuencia. Los estudios aportados se describen a continuación. Los sistemas de antenas inteligentes dependen en gran medida de la posición de los usuarios. Estos sistemas están equipados con arrays de antenas, los cuales aportan la diversidad espacial necesaria para obtener una representación espacial fidedigna del canal radio a través de los perfiles de DoA (DoA, Direction-of-Arrival) y por tanto, la posición de las fuentes de señal. Sin embargo, los errores de fabricación de arrays así como ciertos parámetros de señal conlleva un efecto negativo en las prestaciones de estos sistemas. Por ello se plantea un modelo de señal parametrizado que permite estudiar la influencia que tienen estos factores sobre los errores de estimación de DoA, tanto en acimut como en elevación, utilizando los algoritmos de estimación de DOA más conocidos en la literatura. A partir de las curvas de error, se pueden obtener parámetros de diseño para sistemas de localización basados en arrays. En un segundo estudio se evalúan esquemas de diversidad por polarización con los sistemas multiantena para mejorar la estimación de los perfiles de DoA en canales que presentan pérdidas por despolarización. Para ello se desarrolla un modelo de señal en array con sensibilidad de polarización que toma en cuenta el campo electromagnético de ondas planas. Se realizan simulaciones MC del modelo para estudiar el efecto de la orientación de la polarización como el número de polarizaciones usadas en el transmisor como en el receptor sobre la precisión en la estimación de los perfiles de DoA observados en el receptor. Además, se presentan los perfiles DoA obtenidos en escenarios quasiestáticos de interior con un prototipo de medida MIMO 4x4 de banda estrecha en la banda de 2,45 GHz, los cuales muestran gran fidelidad con el escenario real. Para la obtención de los perfiles DoA se propone un método basado en arrays virtuales, validado con los datos de simulación y los datos experimentales. Con relación a la localización 3D de fuentes en campo cercano (zona de Fresnel), se presenta un tercer estudio para obtener con gran exactitud la estructura espacial del canal de propagación en entornos de interior controlados (en cámara anecóica) utilizando arrays virtuales. El estudio analiza la influencia del tamaño del array y el diagrama de radiación en la estimación de los parámetros de localización proponiendo, para ello, un modelo de señal basado en un vector de enfoque de onda esférico (SWSV). Al aumentar el número de antenas del array se consigue reducir el error RMS de estimación y mejorar sustancialmente la representación espacial del canal. La estimación de los parámetros de localización se lleva a cabo con un nuevo método de búsqueda multinivel adaptativo, propuesto con el fin de reducir drásticamente el tiempo de procesado que demandan otros algoritmos multivariable basados en subespacios, como el MUSIC, a costa de incrementar los requisitos de memoria. Las simulaciones del modelo arrojan resultados que son validados con resultados experimentales y comparados con el límite de Cramer Rao en términos del error cuadrático medio. La compensación del diagrama de radiación acerca sustancialmente la exactitud de estimación de la distancia al límite de Cramer Rao. Finalmente, es igual de importante la evaluación teórica como experimental de las prestaciones de los sistemas MIMO-OFDM. Por ello, se presenta el diseño e implementación de un prototipo de medida MIMO-OFDM-SPAA3D autocalibrado con sistema de posicionamiento de antena automático en la banda de 2,45 Ghz con capacidad para evaluar la capacidad de los sistemas MIMO. Además, tiene la capacidad de caracterizar espacialmente canales MIMO, incorporando para ello una etapa de autocalibración para medir la respuesta en frecuencia de los transmisores y receptores de RF, y así poder caracterizar la respuesta de fase del canal con mayor precisión. Este sistema incorpora un posicionador de antena automático 3D (SPAA3D) basado en un scanner con 3 brazos mecánicos sobre los que se desplaza un posicionador de antena de forma independiente, controlado desde un PC. Este posicionador permite obtener una gran cantidad de mediciones del canal en regiones locales, lo cual favorece la caracterización estadística de los parámetros del sistema MIMO. Con este prototipo se realizan varias campañas de medida para evaluar el canal MIMO en términos de capacidad comparando 2 esquemas de polarización y tomando en cuenta la diversidad en frecuencia aportada por la modulación OFDM en distintos escenarios. ABSTRACT Multiple-antennas technologies have been evolved to be the support of the actual and future wireless communication systems in its way to provide the high quality and high data rates required by new data, voice and data services. However, it is important to understand the behavior of the spatial characteristics of the radio channel, since the channel by itself limits the performance of the actual wireless communications systems. This drawback raises the need to understand the spatial structure of the propagation channel in order to design, assess, and develop more efficient multiantenna technologies for the actual and future wireless communications systems. Multiantenna technologies such as ‘Smart Antennas’ and MIMO systems have generated great interest in the field of wireless communications, i.e. cellular communications systems and more recently WLAN (Wireless Local Area Networks), mainly because the higher quality and the high data rate they are able to provide. Their technological benefits are based on the exploitation of the spatial diversity provided by the use of multiple antennas as happened in the past with some multiaccess technologies such as FDMA (Frequency Division Multiplexing Access), TDMA (Time Division Multiplexing Access), and CDMA (Code Division Multiplexing Access), which give diversity in the domains of frequency, time and code, respectively. This Thesis is mainly focus to study the spatial channel characteristics using schemes of multiple antennas considering several diversity schemes such as space, polarization, and frequency. The spatial characteristics will be study in terms of the direction-of-arrival profiles viewed at the receiver side of the radio link. The first step is to do a review of the smart antennas and MIMO systems technologies highlighting their advantages and drawbacks from a mathematical point of view. In the second step, a set of studies concerning the spatial characterization of the radio channel through the DoA profiles are addressed. The performance of several DoA estimation methods is assessed considering several aspects regarding antenna array structure, polarization diversity, and far-field and near-field conditions. Most of the results of these studies come from simulations of data models and measurements with real multiantena prototypes. In the same way, having understand the importance of validate the theoretical data models with experimental results, a 2,4 GHz MIMO-OFDM-SPAA2D prototype is presented. This prototype is intended for evaluating MIMO-OFDM capacity in indoor and outdoor scenarios, characterize the spatial structure of radio channels, assess several diversity schemes such as polarization, space, and frequency diversity, among others aspects. The studies reported are briefly described below. As is stated in Chapter two, the determination of user position is a fundamental task to be resolved for the smart antenna systems. As these systems are equipped with antenna arrays, they can provide the enough spatial diversity to accurately draw the spatial characterization of the radio channel through the DoA profiles, and therefore the source location. However, certain real implementation factors related to antenna errors, signals, and receivers will certainly reduce the performance of such direction finding systems. In that sense, a parameterized narrowband signal model is proposed to evaluate the influence of these factors in the location parameter estimation through extensive MC simulations. The results obtained from several DoA algorithms may be useful to extract some parameter design for directing finding systems based on arrays. The second study goes through the importance that polarization schemes can have for estimating far-field DoA profiles in radio channels, particularly for scenarios that may introduce polarization losses. For this purpose, a narrowband signal model with polarization sensibility is developed to conduct an analysis of several polarization schemes at transmitter (TX) and receiver (RX) through extensive MC simulations. In addition, spatial characterization of quasistatic indoor scenarios is also carried out using a 2.45 GHz MIMO prototype equipped with single and dual-polarized antennas. A good agreement between the measured DoA profiles with the propagation scenario is achieved. The theoretical and experimental evaluation of polarization schemes is performed using virtual arrays. In that case, a DoA estimation method is proposed based on adding an phase reference to properly track the DoA, which shows good results. In the third study, the special case of near-field source localization with virtual arrays is addressed. Most of DoA estimation algorithms are focused in far-field source localization where the radiated wavefronts are assume to be planar waves at the receive array. However, when source are located close to the array, the assumption of plane waves is no longer valid as the wavefronts exhibit a spherical behavior along the array. Thus, a faster and effective method of azimuth, elevation angles-of-arrival, and range estimation for near-field sources is proposed. The efficacy of the proposed method is evaluated with simulation and validated with measurements collected from a measurement campaign carried out in a controlled propagation environment, i.e. anechoic chamber. Moreover, the performance of the method is assessed in terms of the RMSE for several array sizes, several source positions, and taking into account the effect of radiation pattern. In general, better results are obtained with larger array and larger source distances. The effect of the antennas is included in the data model leading to more accurate results, particularly for range rather than for angle estimation. Moreover, a new multivariable searching method based on the MUSIC algorithm, called MUSA (multilevel MUSIC-based algorithm), is presented. This method is proposed to estimate the 3D location parameters in a faster way than other multivariable algorithms, such as MUSIC algorithm, at the cost of increasing the memory size. Finally, in the last chapter, a MIMO-OFDM-SPAA3D prototype is presented to experimentally evaluate different MIMO schemes regarding antennas, polarization, and frequency in different indoor and outdoor scenarios. The prototype has been developed on a Software-Defined Radio (SDR) platform. It allows taking measurements where future wireless systems will be developed. The novelty of this prototype is concerning the following 2 subsystems. The first one is the tridimensional (3D) antenna positioning system (SPAA3D) based on three linear scanners which is developed for making automatic testing possible reducing errors of the antenna array positioning. A set of software has been developed for research works such as MIMO channel characterization, MIMO capacity, OFDM synchronization, and so on. The second subsystem is the RF autocalibration module at the TX and RX. This subsystem allows to properly tracking the spatial structure of indoor and outdoor channels in terms of DoA profiles. Some results are draw regarding performance of MIMO-OFDM systems with different polarization schemes and different propagation environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Buque para el apoyo de instalaciones offshore, ya sea como suministro o para desempeñar un papel más específico como el remolque y posicionamiento de plataformas o artefactos marinos. Se trata de un buque AHTS con un tiro a punto fijo de 250 toneladas, 4.500 toneladas de peso muerto, capacidad de acomodación para 45 personas y propulsión diésel con dos hélices de paso controlable. Cuenta con una capacidad de cubierta de 750 m2, una grúa principal de 100 toneladas y sistema de posicionamiento dinámico DYNPOS-AUTRO.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, there has been a great increase in the development of wireless technologies and location services. For this reason, numerous projects in the location field, have arisen. In addition, with the appearance of the open Android operating system, wireless technologies are being developed faster than ever. This Project approaches the design and development of a system that combines the technologies of wireless, location and Android with the implementation of an indoor positioning system. As a result, an Android application has been obtained, which detects the position of a phone in a simple and useful way. The application is based on the WIFI manager API of Android. It combines the data stored in a SQL database with the wifi data received at any given time. Afterwards the position of the user is determined with the algorithm that has been implemented. This application is able to obtain the position of any person who is inside a building with Wi-Fi coverage, and display it on the screen of any device with the Android operating system. Besides the estimation of the position, this system displays a map that helps you see in which quadrant of the room are positioned in real time. This system has been designed with a simple interface to allow people without technology knowledge. Finally, several tests and simulations of the system have been carried out to see its operation and accuracy. The performance of the system has been verified in two different places and changes have been made in the Java code to improve its precision and effectiveness. As a result of the several tests, it has been noticed that the placement of the access point (AP) and the configuration of the Wireless network is an important point that should be taken into account to avoid interferences and errors as much as possible, in the estimation of the position. RESUMEN. En los últimos años, se ha producido un incremento en el desarrollo de tecnologías inalámbricas y en servicios de localización y posicionamiento. Por esta razón, han surgido numerosos proyectos relacionados con estas tecnologías. Por otra parte, un punto importante en el desarrollo de estas tecnologías ha sido la aparición del lenguaje Android que ha hecho que estas nuevas tecnologías se implementaran con una mayor rapidez. Este proyecto, se acerca al diseño y desarrollo de un sistema que combina tecnologías inalámbricas, de ubicación y uso de lenguaje Android para el desarrollo de una aplicación de un sistema de posicionamiento en interiores. Como consecuencia de esto se ha obtenido una aplicación Android que detecta la posición de un dispositivo móvil de una manera sencilla e intuititva. La aplicación se basa en la API WIFI de Android, que combina los datos almacenados en una base de datos SQL con los datos recibidos vía Wi-Fi en cualquier momento. A continuación, la posición del usuario se determina con el algoritmo que se ha implementado a lo largo de todo el proyecto utilizando código Android. Esta aplicación es capaz de obtener la posición de cualquier persona que se encuentra dentro de un edificio con cobertura Wi-Fi, mostrando por pantalla la ubicación del usuario en cualquier dispositivo que disponga de sistema operativo Android. Además de la estimación de la posición, este sistema muestra un mapa que le ayuda a ver en qué cuadrante de la sala está situado el usuario. Este sistema ha sido diseñado con una interfaz sencilla para permitir que usuarios sin conocimiento tecnológico o no acostumbrados al uso de los nuevos dispositivos de hoy en día puedan usarlo de una manera sencilla y de forma intuitiva. Por último, se han llevado a cabo varias pruebas y simulaciones del sistema para verificar su funcionamiento y precisión. El rendimiento del sistema se ha comprobado en dos puntos diferentes de la sala (lugar donde se han hecho todas las pruebas y desarrollado la aplicación) realizando cambios en el código Java para mejorar aún más la precisión y eficacia del posicionamiento. Como resultado de todo esto, se ha comprobado que la ubicación del punto de acceso (AP) y la configuración de la red inalámbrica es importante, y por ello se debe de tener en cuenta para evitar interferencias y tantos errores como sea posible en la estimación de la posición.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La evolución de los teléfonos móviles inteligentes, dotados de cámaras digitales, está provocando una creciente demanda de aplicaciones cada vez más complejas que necesitan algoritmos de visión artificial en tiempo real; puesto que el tamaño de las señales dedeo no hace sino aumentar y en cambio el rendimiento de los procesadores de un solo núcleo se ha estancado, los nuevos algoritmos que se diseñen para visión artificial han de ser paralelos para poder ejecutarse en múltiples procesadores y ser computacionalmente escalables. Una de las clases de procesadores más interesantes en la actualidad se encuentra en las tarjetas gráficas (GPU), que son dispositivos que ofrecen un alto grado de paralelismo, un excelente rendimiento numérico y una creciente versatilidad, lo que los hace interesantes para llevar a cabo computación científica. En esta tesis se exploran dos aplicaciones de visión artificial que revisten una gran complejidad computacional y no pueden ser ejecutadas en tiempo real empleando procesadores tradicionales. En cambio, como se demuestra en esta tesis, la paralelización de las distintas subtareas y su implementación sobre una GPU arrojan los resultados deseados de ejecución con tasas de refresco interactivas. Asimismo, se propone una técnica para la evaluación rápida de funciones de complejidad arbitraria especialmente indicada para su uso en una GPU. En primer lugar se estudia la aplicación de técnicas de síntesis de imágenes virtuales a partir de únicamente dos cámaras lejanas y no paralelas—en contraste con la configuración habitual en TV 3D de cámaras cercanas y paralelas—con información de color y profundidad. Empleando filtros de mediana modificados para la elaboración de un mapa de profundidad virtual y proyecciones inversas, se comprueba que estas técnicas son adecuadas para una libre elección del punto de vista. Además, se demuestra que la codificación de la información de profundidad con respecto a un sistema de referencia global es sumamente perjudicial y debería ser evitada. Por otro lado se propone un sistema de detección de objetos móviles basado en técnicas de estimación de densidad con funciones locales. Este tipo de técnicas es muy adecuada para el modelado de escenas complejas con fondos multimodales, pero ha recibido poco uso debido a su gran complejidad computacional. El sistema propuesto, implementado en tiempo real sobre una GPU, incluye propuestas para la estimación dinámica de los anchos de banda de las funciones locales, actualización selectiva del modelo de fondo, actualización de la posición de las muestras de referencia del modelo de primer plano empleando un filtro de partículas multirregión y selección automática de regiones de interés para reducir el coste computacional. Los resultados, evaluados sobre diversas bases de datos y comparados con otros algoritmos del estado del arte, demuestran la gran versatilidad y calidad de la propuesta. Finalmente se propone un método para la aproximación de funciones arbitrarias empleando funciones continuas lineales a tramos, especialmente indicada para su implementación en una GPU mediante el uso de las unidades de filtraje de texturas, normalmente no utilizadas para cómputo numérico. La propuesta incluye un riguroso análisis matemático del error cometido en la aproximación en función del número de muestras empleadas, así como un método para la obtención de una partición cuasióptima del dominio de la función para minimizar el error. ABSTRACT The evolution of smartphones, all equipped with digital cameras, is driving a growing demand for ever more complex applications that need to rely on real-time computer vision algorithms. However, video signals are only increasing in size, whereas the performance of single-core processors has somewhat stagnated in the past few years. Consequently, new computer vision algorithms will need to be parallel to run on multiple processors and be computationally scalable. One of the most promising classes of processors nowadays can be found in graphics processing units (GPU). These are devices offering a high parallelism degree, excellent numerical performance and increasing versatility, which makes them interesting to run scientific computations. In this thesis, we explore two computer vision applications with a high computational complexity that precludes them from running in real time on traditional uniprocessors. However, we show that by parallelizing subtasks and implementing them on a GPU, both applications attain their goals of running at interactive frame rates. In addition, we propose a technique for fast evaluation of arbitrarily complex functions, specially designed for GPU implementation. First, we explore the application of depth-image–based rendering techniques to the unusual configuration of two convergent, wide baseline cameras, in contrast to the usual configuration used in 3D TV, which are narrow baseline, parallel cameras. By using a backward mapping approach with a depth inpainting scheme based on median filters, we show that these techniques are adequate for free viewpoint video applications. In addition, we show that referring depth information to a global reference system is ill-advised and should be avoided. Then, we propose a background subtraction system based on kernel density estimation techniques. These techniques are very adequate for modelling complex scenes featuring multimodal backgrounds, but have not been so popular due to their huge computational and memory complexity. The proposed system, implemented in real time on a GPU, features novel proposals for dynamic kernel bandwidth estimation for the background model, selective update of the background model, update of the position of reference samples of the foreground model using a multi-region particle filter, and automatic selection of regions of interest to reduce computational cost. The results, evaluated on several databases and compared to other state-of-the-art algorithms, demonstrate the high quality and versatility of our proposal. Finally, we propose a general method for the approximation of arbitrarily complex functions using continuous piecewise linear functions, specially formulated for GPU implementation by leveraging their texture filtering units, normally unused for numerical computation. Our proposal features a rigorous mathematical analysis of the approximation error in function of the number of samples, as well as a method to obtain a suboptimal partition of the domain of the function to minimize approximation error.