7 resultados para SEQUENTIAL CRYSTALLIZATION
em Universidad Politécnica de Madrid
Resumo:
TbxFe1−x thin films deposited by sputtering on Mo were investigated structurally and magnetically. The microstructure consists of TbFe2 nanoparticles embedded in an amorphous matrix, and the Tb content can be correlated with an increase in the volume of these nanoparticles. Similar microstructure and behavior were found when TbFe2 was deposited on glass and on a Pt buffer layer. Nevertheless, thermal treatments promote a different effect, depending on the mechanical stiffness of the buffer layer. The layers deposited on Mo, a rigid material, show crystalline TbFe2 together with α-Tb phase upon thermal treatment. In contrast, TbFe2 does not crystallize properly on Pt, a material with a lower stiffness than Mo. Intermediate results were observed on the film deposited on glass. Experimental results show the impact of the buffer stiffness on the crystallization process. Moreover, the formation of α-Tb appears to be fundamental to crystallized TbFe2 on layers deposited on rigid buffers
Confined crystallization of nanolayered poly(ethylene terephthalate) using X-ray diffraction methods
Resumo:
The development of crystalline lamellae in ultra-thin layers of poly(ethylene terephthalate) PET confined between polycarbonate (PC) layers in an alternating assembly is investigated as a function of layer thickness by means of X-ray diffraction methods. Isothermal crystallization from the glassy state is in-situ followed by means of small-angle X-ray diffraction. It is found that the reduced size of the PET layers influences the lamellar nanostructure and induces a preferential lamellar orientation. Two lamellar populations, flat-on and edge-on, are found to coexist in a wide range of crystallization temperatures (Tc = 117–150 °C) and within layer thicknesses down to 35 nm. Flat-on lamellae appear at a reduced crystallization rate with respect to bulk PET giving rise to crystals of similar dimensions separated by larger amorphous regions. In addition, a narrower distribution of lamellar orientations develops when the layer thickness is reduced or the crystallization temperature is raised. In case of edge-on lamellae, crystallization conditions also influence the development of lamellar orientation; however, the latter is little affected by the reduced size of the layers. Results suggest that flat-on lamellae arise as a consequence of spatial confinement and edge-on lamellae could be generated due to the interactions with the PC interface. En este trabajo se investiga mediante difracción de rayos X a ángulos bajos (SAXS) y a ángulos altos (WAXS), la cristalización de láminas delgadas de Polietilén tereftalato (PET) confinadas entre láminas de Policarbonato (PC), tomando como referencia PET sin confinar. El espesor de las capas de PET varía entre 35nm y 115 nm. Se realizaron medidas de difracción a tres temperaturas de cristalización (117ºC, 132ºC y 150ºC) encontrándose que el reducido espesor de las capas de PET influye en la estructura lamelar que se desarrolla, induciendo una orientación preferente de las láminas. Se integró la intensidad difractada alrededor del máximo en SAXS para obtener una representación de la intensidad en función del ángulo acimutal. Mediante análisis de mínimos cuadrados se separó la curva experimental obtenida en tres contribuciones diferentes: una función Gausiana que describe la distribución de las orientaciones de las lamelas, una función lorenziana asociada a los máximos meridionales (asociados a las interfases PET-PC) y un background constante. Por otra parte la cantidad de material cristalizado se estimó asumiendo que la intensidad del background en el barrido acimutal, una vez restado el background del primer difractograma (sin máximos en SAXS) se asocia con la contribución del material isotrópico que resta en la muestra cristalizada. Se observa la coexistencia de dos poblaciones de lamelas: flat-on y edge-on. A medida que el espesor de las láminas de PET disminuye la población de las lamelas flat-on experimenta los siguientes cambios: 1) la distribución de orientación se estrecha, 2) la fracción de material cristalizado orientado aumenta, 3) la cinética de cristalización se ralentiza y 4) el largo espaciado aumenta es decir las regiones amorfas entre lamelas aumentan su tamaño. Parece demostrarse que es en las primeras etapas del crecimiento lamelar cuando la restricción espacial fuerza a las lamelas a esta orientación tipo flat-on frente a la orientación edge-on.
Resumo:
Major ampullate (MA) dragline silk supports spider orb webs, combining strength and extensibility in the toughest biomaterial. MA silk evolved ~376 MYA and identifying how evolutionary changes in proteins influenced silk mechanics is crucial for biomimetics, but is hindered by high spinning plasticity. We use supercontraction to remove that variation and characterize MA silk across the spider phylogeny. We show that mechanical performance is conserved within, but divergent among, major lineages, evolving in correlation with discrete changes in proteins. Early MA silk tensile strength improved rapidly with the origin of GGX amino acid motifs and increased repetitiveness. Tensile strength then maximized in basal entelegyne spiders, ~230 MYA. Toughness subsequently improved through increased extensibility within orb spiders, coupled with the origin of a novel protein (MaSp2). Key changes in MA silk proteins therefore correlate with the sequential evolution high performance orb spider silk and could aid design of biomimetic fibers.
Resumo:
Crystallization and grain growth technique of thin film silicon are among the most promising methods for improving efficiency and lowering cost of solar cells. A major advantage of laser crystallization and annealing over conventional heating methods is its ability to limit rapid heating and cooling to thin surface layers. Laser energy is used to heat the amorphous silicon thin film, melting it and changing the microstructure to polycrystalline silicon (poly-Si) as it cools. Depending on the laser density, the vaporization temperature can be reached at the center of the irradiated area. In these cases ablation effects are expected and the annealing process becomes ineffective. The heating process in the a-Si thin film is governed by the general heat transfer equation. The two dimensional non-linear heat transfer equation with a moving heat source is solve numerically using the finite element method (FEM), particularly COMSOL Multiphysics. The numerical model help to establish the density and the process speed range needed to assure the melting and crystallization without damage or ablation of the silicon surface. The samples of a-Si obtained by physical vapour deposition were irradiated with a cw-green laser source (Millennia Prime from Newport-Spectra) that delivers up to 15 W of average power. The morphology of the irradiated area was characterized by confocal laser scanning microscopy (Leica DCM3D) and Scanning Electron Microscopy (SEM Hitachi 3000N). The structural properties were studied by micro-Raman spectroscopy (Renishaw, inVia Raman microscope).
Resumo:
The aim of this work is to evaluate the influence of S. pombe and T. delbrueckii species on the sensory quality of red wine when used in sequential and mixed fermentations with S. cerevisiae.
Resumo:
An advantage of laser crystallization over conventional heating methods is its ability to limit rapid heating and cooling to thin surface layers. Laser energy is used to heat the a-Si thin film to change the microstructure to poly-Si. Thin film samples of a-Si were irradiated with a CW-green laser source. Laser irradiated spots were produced by using different laser powers and irradiation times. These parameters are identified as key variables in the crystallization process. The power threshold for crystallization is reduced as the irradiation time is increased. When this threshold is reached the crystalline fraction increases lineally with power for each irradiation time. The experimental results are analysed with the aid of a numerical thermal model and the presence of two crystallization mechanisms are observed: one due to melting and the other due to solid phase transformation.
Resumo:
Torulaspora delbrueckii is a non-Saccharomyces yeast with interesting metabolic and physiological properties of potential use in oenology. This work examines the fermentative behaviour of five strains of T. delbrueckii in sequential fermentations with Saccharomyces cerevisiae, analysing the formation of aromatic compounds, polyalcohols and pigments. The fermentative power of these five strains ranged between 7.6 and 9.0% v/v ethanol; the associated volatile acidity was 0.2e0.7 g/l acetic acid. The production of glycerol was inferior to that of S. cerevisiae alone. The mean 2,3-butanediol concentration reached in single-culture S. cerevisiae fermentations was 73% higher than in the five sequential T. delbrueckii/S. cerevisiae fermentations. However, these fermentations produced larger quantities of diacetyl, ethyl lactate and 2-phenylethyl acetate than single-culture S. cerevisiae fermentation. 3-ethoxy propanol was produced only in the sequential fermentations. The five sequential fermentations produced smaller quantities of vitisin A and B than single-culture S. cerevisiae fermentation. In tests performed prior to the addition of the S. cerevisiae in the sequential fermentations, none of the T. delbrueckii strains showed any extracellular hydroxycinnamate decarboxylase activity. They therefore produced no vinyl phenolic pyranoanthocyanins.