13 resultados para SEMISIMPLE FINITE-DIMENSIONAL JORDAN SUPERALGEBRA
em Universidad Politécnica de Madrid
Resumo:
Let X be an in�finite-dimensional complex Banach space. Very recently, several results on the existence of entire functions on X bounded on a given ball B1 � X and unbounded on another given ball B2 � X have been obtained. In this paper we consider the problem of �finding entire functions which are uniformly bounded on a collection of balls and unbounded on the balls of some other collection. RESUMEN. Sea X un espacio de Banach complejo de dimensión infinita. En este trabajo, los autores estudian el problema de encontrar una función entera en X que esté uniformemente acotada en una colección de de bolas en X y que no esté acotada en las bolas de otra colección.
Resumo:
A two-dimensional finite element model of current flow in the front surface of a PV cell is presented. In order to validate this model we perform an experimental test. Later, particular attention is paid to the effects of non-uniform illumination in the finger direction which is typical in a linear concentrator system. Fill factor, open circuit voltage and efficiency are shown to decrease with increasing degree of non-uniform illumination. It is shown that these detrimental effects can be mitigated significantly by reoptimization of the number of front surface metallization fingers to suit the degree of non-uniformity. The behavior of current flow in the front surface of a cell operating at open circuit voltage under non-uniform illumination is discussed in detail.
Resumo:
We propose the use of a highly-accurate three-dimensional (3D) fully automatic hp-adaptive finite element method (FEM) for the characterization of rectangular waveguide discontinuities. These discontinuities are either the unavoidable result of mechanical/electrical transitions or deliberately introduced in order to perform certain electrical functions in modern communication systems. The proposed numerical method combines the geometrical flexibility of finite elements with an accuracy that is often superior to that provided by semi-analytical methods. It supports anisotropic refinements on irregular meshes with hanging nodes, and isoparametric elements. It makes use of hexahedral elements compatible with high-order H(curl)H(curl) discretizations. The 3D hp-adaptive FEM is applied for the first time to solve a wide range of 3D waveguide discontinuity problems of microwave communication systems in which exponential convergence of the error is observed.
Resumo:
The solution to the problem of finding the optimum mesh design in the finite element method with the restriction of a given number of degrees of freedom, is an interesting problem, particularly in the applications method. At present, the usual procedures introduce new degrees of freedom (remeshing) in a given mesh in order to obtain a more adequate one, from the point of view of the calculation results (errors uniformity). However, from the solution of the optimum mesh problem with a specific number of degrees of freedom some useful recommendations and criteria for the mesh construction may be drawn. For 1-D problems, namely for the simple truss and beam elements, analytical solutions have been found and they are given in this paper. For the more complex 2-D problems (plane stress and plane strain) numerical methods to obtain the optimum mesh, based on optimization procedures have to be used. The objective function, used in the minimization process, has been the total potential energy. Some examples are presented. Finally some conclusions and hints about the possible new developments of these techniques are also given.
Resumo:
In a Finite Element (FE) analysis of elastic solids several items are usually considered, namely, type and shape of the elements, number of nodes per element, node positions, FE mesh, total number of degrees of freedom (dot) among others. In this paper a method to improve a given FE mesh used for a particular analysis is described. For the improvement criterion different objective functions have been chosen (Total potential energy and Average quadratic error) and the number of nodes and dof's of the new mesh remain constant and equal to the initial FE mesh. In order to find the mesh producing the minimum of the selected objective function the steepest descent gradient technique has been applied as optimization algorithm. However this efficient technique has the drawback that demands a large computation power. Extensive application of this methodology to different 2-D elasticity problems leads to the conclusion that isometric isostatic meshes (ii-meshes) produce better results than the standard reasonably initial regular meshes used in practice. This conclusion seems to be independent on the objective function used for comparison. These ii-meshes are obtained by placing FE nodes along the isostatic lines, i.e. curves tangent at each point to the principal direction lines of the elastic problem to be solved and they should be regularly spaced in order to build regular elements. That means ii-meshes are usually obtained by iteration, i.e. with the initial FE mesh the elastic analysis is carried out. By using the obtained results of this analysis the net of isostatic lines can be drawn and in a first trial an ii-mesh can be built. This first ii-mesh can be improved, if it necessary, by analyzing again the problem and generate after the FE analysis the new and improved ii-mesh. Typically, after two first tentative ii-meshes it is sufficient to produce good FE results from the elastic analysis. Several example of this procedure are presented.
Resumo:
Axisymmetric shells are analyzed by means of one-dimensional continuum elements by using the analogy between the bending of shells and the bending of beams on elastic foundation. The mathematical model is formulated in the frequency domain. Because the solution of the governing equations of vibration of beams are exact, the spatial discretization only depends on geometrical or material considerations. For some kind of situations, for example, for high frequency excitations, this approach may be more convenient than other conventional ones such as the finite element method.
Resumo:
The vertical dynamic actions transmitted by railway vehicles to the ballasted track infrastructure is evaluated taking into account models with different degree of detail. In particular, we have studied this matter from a two-dimensional (2D) finite element model to a fully coupled three-dimensional (3D) multi-body finite element model. The vehicle and track are coupled via a non-linear Hertz contact mechanism. The method of Lagrange multipliers is used for the contact constraint enforcement between wheel and rail. Distributed elevation irregularities are generated based on power spectral density (PSD) distributions which are taken into account for the interaction. The numerical simulations are performed in the time domain, using a direct integration method for solving the transient problem due to the contact nonlinearities. The results obtained include contact forces, forces transmitted to the infrastructure (sleeper) by railpads and envelopes of relevant results for several track irregularities and speed ranges. The main contribution of this work is to identify and discuss coincidences and differences between discrete 2D models and continuum 3D models, as wheel as assessing the validity of evaluating the dynamic loading on the track with simplified 2D models
Resumo:
A previous axisymmetric model of the supersonic expansion of a collisionless, hot plasma in a divergent magnetic nozzle is extended here in order to include electron-inertia effects. Up to dominant order on all components of the electron velocity, electron momentum equations still reduce to three conservation laws. Electron inertia leads to outward electron separation from the magnetic streamtubes. The progressive plasma filling of the adjacent vacuum region is consistent with electron-inertia being part of finite electron Larmor radius effects, which increase downstream and eventually demagnetize the plasma. Current ambipolarity is not fulfilled and ion separation can be either outwards or inwards of magnetic streamtubes, depending on their magnetization. Electron separation penalizes slightly the plume efficiency and is larger for plasma beams injected with large pressure gradients. An alternative nonzero electron-inertia model [E. Hooper, J. Propul. Power 9, 757 (1993)] based on cold plasmas and current ambipolarity, which predicts inwards electron separation, is discussed critically. A possible competition of the gyroviscous force with electron-inertia effects is commented briefly.
Resumo:
In this paper, a fully automatic goal-oriented hp-adaptive finite element strategy for open region electromagnetic problems (radiation and scattering) is presented. The methodology leads to exponential rates of convergence in terms of an upper bound of an user-prescribed quantity of interest. Thus, the adaptivity may be guided to provide an optimal error, not globally for the field in the whole finite element domain, but for specific parameters of engineering interest. For instance, the error on the numerical computation of the S-parameters of an antenna array, the field radiated by an antenna, or the Radar Cross Section on given directions, can be minimized. The efficiency of the approach is illustrated with several numerical simulations with two dimensional problem domains. Results include the comparison with the previously developed energy-norm based hp-adaptivity.
Resumo:
The program PECET (Boundary Element Program in Three-Dimensional Elasticity) is presented in this paper. This program, written in FORTRAN V and implemen ted on a UNIVAC 1100,has more than 10,000 sentences and 96 routines and has a lot of capabilities which will be explained in more detail. The object of the program is the analysis of 3-D piecewise heterogeneous elastic domains, using a subregionalization process and 3-D parabolic isopara, metric boundary elements. The program uses special data base management which will be described below, and the modularity followed to write it gives a great flexibility to the package. The Method of Analysis includes an adaptive integration process, an original treatment of boundary conditions, a complete treatment of body forces, the utilization of a Modified Conjugate Gradient Method of solution and an original process of storage which makes it possible to save a lot of memory.
Resumo:
In this work, an improvement of the results presented by [1] Abellanas et al. (Weak Equilibrium in a Spatial Model. International Journal of Game Theory, 40(3), 449-459) is discussed. Concretely, this paper investigates an abstract game of competition between two players that want to earn the maximum number of points from a finite set of points in the plane. It is assumed that the distribution of these points is not uniform, so an appropriate weight to each position is assigned. A definition of equilibrium which is weaker than the classical one is included in order to avoid the uniqueness of the equilibrium position typical of the Nash equilibrium in these kinds of games. The existence of this approximated equilibrium in the game is analyzed by means of computational geometry techniques.
Resumo:
Two mathematical models are used to simulate pollution in the Bay of Santander. The first is the hydrodynamic model that provides the velocity field and height of the water. The second gives the pollutant concentration field as a resultant. Both models are formulated in two-dimensional equations. Linear triangular finite elements are used in the Galerkin procedure for spatial discretization. A finite difference scheme is used for the time integration. At each time step the calculated results of the first model are input to the second model as field data. The efficiency and accuracy of the models are tested by their application to a simple illustrative example. Finally a case study in simulation of pollution evolution in the Bay of Santander is presented
Resumo:
One of the main concerns when conducting a dam test is the acute determination of the hydrograph for a specific flood event. The use of 2D direct rainfall hydraulic mathematical models on a finite elements mesh, combined with the efficiency of vector calculus that provides CUDA (Compute Unified Device Architecture) technology, enables nowadays the simulation of complex hydrological models without the need for terrain subbasin and transit splitting (as in HEC-HMS). Both the Spanish PNOA (National Plan of Aereal Orthophotography) Digital Terrain Model GRID with a 5 x 5 m accuracy and the CORINE GIS Land Cover (Coordination of INformation of the Environment) that allows assessment of the ground roughness, provide enough data to easily build these kind of models