21 resultados para SCHOTTKY PHOTODIODES
em Universidad Politécnica de Madrid
Resumo:
We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky diodes for extreme ultraviolet (EUV) detection. AlGaN layers were grown on silicon wafers by molecular beam epitaxy with the conventional and inverted Schottky structure, where the undoped, active layer was grown before or after the n-doped layer, respectively. Different current mechanisms were observed in the two structures. The inverted Schottky diode was designed for the optimized backside sensitivity in the hybrid imagers. A cut-off wavelength of 280 nm was observed with three orders of magnitude intrinsic rejection ratio of the visible radiation. Furthermore, the inverted structure was characterized using a EUV source based on helium discharge and an open electrode design was used to improve the sensitivity. The characteristic He I and He II emission lines were observed at the wavelengths of 58.4 nm and 30.4 nm, respectively, proving the feasibility of using the inverted layer stack for EUV detection
Resumo:
High quality 1 μm thick a-plane MgxZn1−xO layers were produced by molecular beam epitaxy with Mg contents higher than 50%. Resonant Rutherford backscattering spectrometry combined with ion channeling revealed a uniform growth in both composition and atomic order. The lattice-site location of Mg, Zn and O elements was determined independently, proving the substitutional behaviour of Mg in Zn-sites of the wurtzite lattice. X-Ray diffraction pole figure analysis also confirms the absence of phase separation. Optical properties at such high Mg contents were studied in Schottky photodiodes.
Resumo:
La presente tesis fue ideada con el objetivo principal de fabricar y caracterizar fotodiodos Schottky en capas de ZnMgO y en estructuras de pozo cuántico ZnMgO/ZnO para la detección de luz UV. La elección de este material semiconductor vino motivada por la posibilidad que ofrece de detectar y procesar señales simultáneamente, en un amplio margen de longitudes de onda, al igual que su más directo competidor el GaN. En esta memoria se da en primer lugar una visión general de las propiedades estructurales y ópticas del ZnO, prestando especial atención a su ternario ZnMgO y a las estructuras de pozo cuántico ZnMgO/ZnO. Además, se han desarrollado los conocimientos teóricos necesarios para una mejor compresión y discusión de los resultados alcanzados. En lo que respecta a los resultados de esta memoria, en esencia, estos se dividen en dos bloques. Fotodiodos desarrollados sobre capas delgadas de ZnMgO no-polar, y sobre estructuras de pozo cuántico de ZnMgO/ZnO no-polares y semipolares Fotodiodos de capas delgadas de ZnMgO. Es bien conocido que la adición de Mg a la estructura cristalina del ZnO desplaza el borde de absorción hacia energías mayores en el UV. Se ha aprovechado esto para fabricar fotodiodos Schottky sobre capas de ZnMgO crecidas por MOCVD y MBE, los cuales detecten en un ventana de energías comprendida entre 3.3 a 4.6 eV. Sobre las capas de ZnMgO, con diferentes contenidos de Mg(5.6-18.0 %), crecidas por MOCVD se han fabricado fotodiodos Schottky. Se han estudiado en detalle las curvas corrientevoltaje (I-V). Seguidamente, se ha realizado un análisis de la respuesta espectral bajo polarización inversa. Tanto los valores de responsividad obtenidos como el contraste UV/VIS están claramente aumentados por la presencia de ganancia. Paralelamente, se han realizado medidas de espectroscopia de niveles profundos (DLOS), identificándose la presencia de dos niveles profundos de carácter aceptor. El papel desempeñado por estos en la ganancia ha sido analizado meticulosamente. Se ha demostrado que cuando estos son fotoionizados son responsables directos del gran aumento de la corriente túnel que se produce a través de la barrera Schottky, dando lugar a la presencia de la ganancia observada, que además resulta ser función del flujo de fotones incidente. Para extender el rango detección hasta 4.6 eV se fabricaron fotodiodos sobre capas de ZnMgO de altísima calidad cristalina crecidas por MBE. Sobre estos se ha realizado un riguroso análisis de las curvas I-V y de las curvas capacidad-voltaje (CV), para posteriormente identificar los niveles profundos presentes en el material, mediante la técnica de DLOS. Así mismo se ha medido la respuesta espectral de los fotodetectores, la cual muestra un corte abrupto y un altísimo contraste UV/VIS. Además, se ha demostrado como estos son perfectos candidatos para la detección de luz en la región ciega al Sol. Por otra parte, se han fabricado fotodiodos MSM sobre estas mismas capas. Se han estudiado las principales figuras de mérito de estos, observándose unas corrientes bajas de oscuridad, un contraste UV/VIS de 103, y la presencia de fotocorriente persistente. Fotodiodos Schottky de pozos cuánticos de ZnO/ZnMgO. En el segundo bloque de esta memoria, con el objeto final de clarificar el impacto que tiene el tratamiento del H2O2 sobre las características optoelectrónicas de los dispositivos, se ha realizado un estudio detallado, en el que se han analizado por separado fotodiodos tratados y no tratados con H2O2, fabricados sobre pozos cuánticos de ZnMgO/ZnO. Se ha estudiado la respuesta espectral en ambos casos, observándose la presencia de ganancia en los dos. A través de un análisis meticuloso de las características electrónicas y optoeletrónicas de los fotodiodos, se han identificado dos mecanismos de ganancia internos diferentes en función de que la muestra sea tratada o no-tratada. Se han estudiado fotodetectores sensibles a la polarización de la luz (PSPDs) usando estructuras de pozo cuántico no-polares y semipolares sobre sustratos de zafiro y sustratos de ZnO. En lo que respecta a los PSPDs sobre zafiro, en los cuales el pozo presenta una tensión acumulada en el plano, se ha visto que el borde de absorción se desplaza _E _21 meV con respecto a luz linealmente polarizada perpendicular y paralela al eje-c, midiéndose un contraste (RE || c /RE c)max _ 6. Con respecto a los PSPDs crecidos sobre ZnO, los cuales tienen el pozo relajado, se ha obtenido un 4E _30-40, y 21 meV para las heteroestructuras no-polar y semipolar, respectivamente. Además el máximo contraste de responsividad fue de (RE || c /RE c)max _ 6 . Esta sensibilidad a la polarización de la luz ha sido explicada en términos de las transiciones excitónicas entre la banda de conducción y las tres bandas de valencia. ABSTRACT The main goal of the present thesis is the fabrication and characterization of Schottky photodiodes based on ZnMgO layers and ZnMgO / ZnO quantum wells (QWs) for the UV detection. The decision of choosing this semiconductor was mainly motivated by the possibility it offers of detecting and processing signals simultaneously in a wide range of wavelengths like its main competitor GaN. A general overview about the structural and optical properties of ZnO, ZnMgO layers and ZnMgO/ZnO QWs is given in the first part of this thesis. Besides, it is shown the necessary theoretical knowledge for a better understanding of the discussion presented here. The results of this thesis may be divided in two parts. On the one hand, the first part is based on studying non-polar ZnMgO photodiodes. On the other hand, the second part is focused on the characterization of non-polar and semipolar ZnMgO / ZnO QWs Schottky photodiodes. ZnMgO photodiodes. It is well known that the addition of Mg in the crystal structure of ZnO results in a strong blue-shift of the ZnO band-gap. Taking into account this fact Schottky photodiodes were fabricated on ZnMgO layers grown by MOCVD and MBE. Concerning ZnMgO layers grown by MOCVD, a series of Schottky photodiodes were fabricated, by varying the Mg content from 5.6% to 18 %. Firstly, it has been studied in detail the current-voltage curves. Subsequently, spectral response was analyzed at reverse bias voltage. Both the rejection ratio and the responsivity are shown to be largely enhanced by the presence of an internal gain mechanism. Simultaneously, measurements of deep level optical spectroscopy were carried out, identifying the presence of two acceptor-like deep levels. The role played for these in the gain observed was studied in detail. It has been demonstrated that when these are photoionized cause a large increase in the tunnel current through the Schottky barrier, yielding internal gains that are a function of the incident photon flux. In order to extend the detection range up to 4.6 eV, photodiodes ZnMgO grown by MBE were fabricated. An exhaustive analysis of the both I-V and CV characteristics was performed. Once again, deep levels were identified by using the technique DLOS. Furthermore, the spectral response was measured, observing sharp absorption edges and high UV/VIS rejections ratio. The results obtained have confirmed these photodiodes are excellent candidates for the light detection in the solar-blind region. In addition, MSM photodiodes have also been fabricated on the same layers. The main figures of merit have been studied, showing low dark currents, a large UV/VIS rejection ratio and persistent photocurrent. ZnMgO/ZnO QWs photodiodes. The second part was focused on ZnMgO/ ZnO QWs. In order to clarify the impact of the H2O2 treatment on the performance of the Schottky diodes, a comparative study using treated and untreated ZnMgO/ZnO photodiodes has been carried out. The spectral response in both cases has shown the presence of gain, under reverse bias. Finally, by means of the analysis of electronic and optoelectronic characteristics, two different internal gain mechanisms have been indentified in treated and non-treated material. Light polarization-sensitive UV photodetectors (PSPDs) using non-polar and semipolar ZnMgO/ZnO multiple quantum wells grown both on sapphire and ZnO substrates have been demonstrated. For the PSPDs grown on sapphire with anisotropic biaxial in-plain strain, the responsivity absorption edge shifts by _E _21 meV between light polarized perpendicular and parallel to the c-axis, and the maximum responsivity contrast is (RE || c /RE c)max _ 6 . For the PSPDs grown on ZnO, with strain-free quantum wells, 4E _30-40, and 21 meV for non-polar and semipolar heterostructures, and maximum (R /R||)max _10. for non-polar heterostructure was achieved. These light polarization sensitivities have been explained in terms of the excitonic transitions between the conduction and the three valence bands.
Resumo:
Homoepitaxial ZnO/(Zn,Mg)O multiple quantum wells (MQWs) grown with m- and r-plane orientations are used to demonstrate Schottky photodiodes sensitive to the polarization state of light. In both orientations, the spectral photoresponse of the MQW photodiodes shows a sharp excitonic absorption edge at 3.48 eV with a very low Urbach tail, allowing the observation of the absorption from the A, B and C excitonic transitions. The absorption edge energy is shifted by ∼30 and ∼15 meV for the m- and r-plane MQW photodiodes, respectively, in full agreement with the calculated polarization of the A, B, and C excitonic transitions. The best figures of merit are obtained for the m-plane photodiodes, which present a quantum efficiency of ∼11%, and a specific detectivity D* of ∼6.4 × 1010 cm Hz1/2/W. In these photodiodes, the absorption polarization sensitivity contrast between the two orthogonal in-plane axes yields a maximum value of (R⊥/R||)max ∼ 9.9 with a narrow bandwidth of ∼33 meV.
Resumo:
We report on the electrical transport properties of all-oxide La0.7Ca0.3MnO3/SrTiO3:Nb heterojunctions with lateral size of just a few micrometers. The use of lithography techniques to pattern manganite pillars ensures perpendicular transport and allows exploration of the microscopic conduction mechanism through the interface. From the analysis of the current-voltage characteristics in the temperature range 20-280 K we find a Schottky-like behavior that can be described by a mechanism of thermally assisted tunneling if a temperature-dependent value of the dielectric permittivity of SrTiO3:Nb (NSTO) is considered.We determine the Schottky energy barrier at the interface, qVB = 1.10 ± 0.02 eV, which is found to be temperature independent, and a value of ? = 17 ± 2 meV for the energy of the Fermi level in NSTO with respect to the bottom of its conduction band.
Resumo:
Indium nitride (InN) has been the subject of intense research in recent years. Some of its most attractive features are its excellent transport properties such as its small band edge electron effective mass, high electron mobilities and peak drift velocities, and high frequency transient drift velocity oscillations [1]. These suggest enormous potential applications for InN in high frequency electronic devices. But to date the high unintentional bulk electron concentration (n~1018 cm-3) of undoped InN samples and the surface electron accumulation layer make it a hard task to create a reliable metalsemiconductor Schottky barrier. Some attempts have been made to overcome this problem by means of material oxidation [2] or deposition of insulators [3]. In this work we present a way to obtain an electrical rectification behaviour by means of heterojunction growth. Due to the big band gap differences among nitride semiconductors, it’s possible to create a structure with high band offsets. In InN/GaN heterojunctions, depending on the GaN doping, the magnitude of conduction and valence band offset are critical parameters which allow distinguishing among different electrical behaviours. The earliest estimate of the valence band offset at an InN–GaN heterojunction in a wurtzite structure was measured to be ~0.85 eV [4], while the Schottky barrier heights were determined to be ~ 1,4 eV [5].We grew In-face InN layer with varying thickness (between 150 nm and 1 mm) by plasma assisted molecular beam epitaxy (PA-MBE) on GaNntemplates (GaN/Al2O3), with temperatures ranging between 300°C and 450°C. The different doping in GaN template (Si doping, Fe doping and Mg doping) results in differences in band alignments of the two semiconductors changing electrical barriers for carriers and consequently electrical conduction behaviour. The processing of the devices includes metallization of the ohmic contacts on InN and GaN, for which we used Ti/Al/Ni/Au. Whereas an ohmic contact on InN is straightforward, the main issue was the fabrication of the contact on GaN due to the very low decomposition temperature of InN. A standard ohmic contact on GaN is generally obtained by high temperature rapid thermal annealing (RTA), typically done between 500ºC and 900ºC[6]. In this case, the limitation due to the presence of In-face InN imposes an upper limit on the temperature for the thermal annealing process and ohmic contact formation of about 450°C. We will present results on the morphology of the InN layers by X-Ray diffraction and SEM, and electrical measurements, in particular current-voltage and capacitance-voltage characteristics.
Resumo:
In this paper, we show room temperature operation of a quantum well infrared photodetector (QWIP) using lateral conduction through ohmic contacts deposited at both sides of two n-doped quantum wells. To reduce the dark current due to direct conduction in the wells, we apply an electric field between the quantum wells and two pinch-off Schottky gates, in a fashion similar to a field effect device. Since the normal incidence absorption is strongly reduced in intersubband transitions in quantum wells, we first analyze the response of a detector based on quantum dots (QD). This QD device shows photocurrent signal up to 150 K when it is processed in conventional vertical detector. However, it is possible to observe room temperature signal when it is processed in a lateral structure. Finally, the room temperature photoresponse of the QWIP is demonstrated, and compared with theory. An excellent agreement between the estimated and measured characteristics of the device is found
Resumo:
There has been significant research in the study of in-plane charge-carrier transport in graphene in order to understand and exploit its unique electrical properties; however, the vertical graphene–semiconductor system also presents opportunities for unique devices. In this letter, we investigate the epitaxial graphene/p-type 4H-SiC system to better understand this vertical heterojunction. The I–V behavior does not demonstrate thermionic emission properties that are indicative of a Schottky barrier but rather demonstrates characteristics of a semiconductor heterojunction. This is confirmed by the fitting of the temperature-dependent I–V curves to classical heterojunction equations and the observation of band-edge electroluminescence in SiC.
Resumo:
As a wide-bandgap semiconductor, gallium nitride (GaN) is an attractive material for next-generation power devices. To date, the capabilities of GaN-based high electron mobility transistors (HEMTs) have been limited by self-heating effects (drain current decreases due to phonon scattering-induced carrier velocity reductions at high drain fields). Despite awareness of this, attempts to mitigate thermal impairment have been limited due to the difficulties involved with placing high thermal conductivity materials close to heat sources in the device. Heat spreading schemes have involved growth of AIGaN/GaN on single crystal or CVD diamond, or capping of fullyprocessed HEMTs using nanocrystalline diamond (NCD). All approaches have suffered from reduced HEMT performance or limited substrate size. Recently, a "gate after diamond" approach has been successfully demonstrated to improve the thermal budget of the process by depositing NCD before the thermally sensitive Schottky gate and also to enable large-area diamond implementation.
Resumo:
In order to clarify the effect of charged dislocations and surface donor states on the transport mechanisms in polar AlInN/AlN/GaN heterostructures, we have studied the current-voltage characteristics of Schottky junctions fabricated on AlInN/AlN/GaN heterostructures. The reverse-bias leakage current behaviour has been interpreted with a Poole-Frenkel emission of electrons from trap states near the metal-semiconductor junction to dislocation induced states. The variation of the Schottky barrier height as a function of the AlN layer thickness has been measured and discussed, considering the role of the surface states in the formation of the two dimensional electron gas at AlN/GaN interface.
Resumo:
Here we report on the study of nano-crack formation in Al1−xInxN/AlN/GaN heterostructures, on its association with composition fluctuation and on its local electrical properties. It is shown here that indium segregation at nano-cracks and threading dislocations originating from the non-pseudomorphic AlN interlayer could be the cause of the high reverse-bias gate leakage current of Ni/Au Schottky contacts on Al1−xInxN/AlN/GaN heterostructures and significantly affects the contact rectifying behavior. Segregation of indium around crack tips in Al1−xInxN acting as conductive paths was assessed with conductive atomic force microscopy.
Resumo:
El objetivo principal del presente trabajo es estudiar y explotar estructuras que presentan un gas bidimensional de electrones (2DEG) basadas en compuestos nitruros con alto contenido de indio. Existen muchas preguntas abiertas, relacionadas con el nitruro de indio y sus aleaciones, algunas de las cuales se han abordado en este estudio. En particular, se han investigado temas relacionados con el análisis y la tecnología del material, tanto para el InN y heteroestructuras de InAl(Ga)N/GaN como para sus aplicaciones a dispositivos avanzados. Después de un análisis de la dependencia de las propiedades del InN con respecto a tratamientos de procesado de dispositivos (plasma y térmicos), el problema relacionado con la formación de un contacto rectificador es considerado. Concretamente, su dificultad es debida a la presencia de acumulación de electrones superficiales en la forma de un gas bidimensional de electrones, debido al pinning del nivel de Fermi. El uso de métodos electroquímicos, comparados con técnicas propias de la microelectrónica, ha ayudado para la realización de esta tarea. En particular, se ha conseguido lamodulación de la acumulación de electrones con éxito. En heteroestructuras como InAl(Ga)N/GaN, el gas bidimensional está presente en la intercara entre GaN y InAl(Ga)N, aunque no haya polarización externa (estructuras modo on). La tecnología relacionada con la fabricación de transistores de alta movilidad en modo off (E-mode) es investigada. Se utiliza un método de ataque húmedo mediante una solución de contenido alcalino, estudiando las modificaciones estructurales que sufre la barrera. En este sentido, la necesidad de un control preciso sobre el material atacado es fundamental para obtener una estructura recessed para aplicaciones a transistores, con densidad de defectos e inhomogeneidad mínimos. La dependencia de la velocidad de ataque de las propiedades de las muestras antes del tratamiento es observada y comentada. Se presentan también investigaciones relacionadas con las propiedades básicas del InN. Gracias al uso de una puerta a través de un electrolito, el desplazamiento de los picos obtenidos por espectroscopia Raman es correlacionado con una variación de la densidad de electrones superficiales. En lo que concierne la aplicación a dispositivos, debido al estado de la tecnología actual y a la calidad del material InN, todavía no apto para dispositivos, la tesis se enfoca a la aplicación de heteroestructuras de InAl(Ga)N/GaN. Gracias a las ventajas de una barrera muy fina, comparada con la tecnología de AlGaN/GaN, el uso de esta estructura es adecuado para aplicaciones que requieren una elevada sensibilidad, estando el canal 2DEG más cerca de la superficie. De hecho, la sensibilidad obtenida en sensores de pH es comparable al estado del arte en términos de variaciones de potencial superficial, y, debido al poco espesor de la barrera, la variación de la corriente con el pH puede ser medida sin necesidad de un electrodo de referencia externo. Además, estructuras fotoconductivas basadas en un gas bidimensional presentan alta ganancia debida al elevado campo eléctrico en la intercara, que induce una elevada fuerza de separación entre hueco y electrón generados por absorción de luz. El uso de metalizaciones de tipo Schottky (fotodiodos Schottky y metal-semiconductormetal) reduce la corriente de oscuridad, en comparación con los fotoconductores. Además, la barrera delgada aumenta la eficiencia de extracción de los portadores. En consecuencia, se obtiene ganancia en todos los dispositivos analizados basados en heteroestructuras de InAl(Ga)N/GaN. Aunque presentando fotoconductividad persistente (PPC), los dispositivos resultan más rápidos con respeto a los valores que se dan en la literatura acerca de PPC en sistemas fotoconductivos. ABSTRACT The main objective of the present work is to study and exploit the two-dimensionalelectron- gas (2DEG) structures based on In-related nitride compounds. Many open questions are analyzed. In particular, technology and material-related topics are the focus of interest regarding both InNmaterial and InAl(Ga)N/GaNheterostructures (HSs) as well as their application to advanced devices. After the analysis of the dependence of InN properties on processing treatments (plasma-based and thermal), the problemof electrical blocking behaviour is taken into consideration. In particular its difficulty is due to the presence of a surface electron accumulation (SEA) in the form of a 2DEG, due to Fermi level pinning. The use of electrochemical methods, compared to standard microelectronic techniques, helped in the successful realization of this task. In particular, reversible modulation of SEA is accomplished. In heterostructures such as InAl(Ga)N/GaN, the 2DEGis present at the interface between GaN and InAl(Ga)N even without an external bias (normally-on structures). The technology related to the fabrication of normally off (E-mode) high-electron-mobility transistors (HEMTs) is investigated in heterostructures. An alkali-based wet-etching method is analysed, standing out the structural modifications the barrier underwent. The need of a precise control of the etched material is crucial, in this sense, to obtain a recessed structure for HEMT application with the lowest defect density and inhomogeneity. The dependence of the etch rate on the as-grown properties is observed and commented. Fundamental investigation related to InNis presented, related to the physics of this degeneratematerial. With the help of electrolyte gating (EG), the shift in Raman peaks is correlated to a variation in surface eletron density. As far as the application to device is concerned, due to the actual state of the technology and material quality of InN, not suitable for working devices yet, the focus is directed to the applications of InAl(Ga)N/GaN HSs. Due to the advantages of a very thin barrier layer, compared to standard AlGaN/GaN technology, the use of this structure is suitable for high sensitivity applications being the 2DEG channel closer to the surface. In fact, pH sensitivity obtained is comparable to the state-of-the-art in terms of surface potential variations, and, due to the ultrathin barrier, the current variation with pH can be recorded with no need of the external reference electrode. Moreover, 2DEG photoconductive structures present a high photoconductive gain duemostly to the high electric field at the interface,and hence a high separation strength of photogenerated electron and hole. The use of Schottky metallizations (Schottky photodiode and metal-semiconductor-metal) reduce the dark current, compared to photoconduction, and the thin barrier helps to increase the extraction efficiency. Gain is obtained in all the device structures investigated. The devices, even if they present persistent photoconductivity (PPC), resulted faster than the standard PPC related decay values.
Resumo:
Intermediate band formation on silicon layers for solar cell applications was achieved by titanium implantation and laser annealing. A two-layer heterogeneous system, formed by the implanted layer and by the un-implanted substrate, was formed. In this work, we present for the first time electrical characterization results which show that recombination is suppressed when the Ti concentration is high enough to overcome the Mott limit, in agreement with the intermediate band theory. Clear differences have been observed between samples implanted with doses under or over the Mott limit. Samples implanted under the Mott limit have capacitance values much lower than the un-implanted ones as corresponds to a highly doped semiconductor Schottky junction. However, when the Mott limit is surpassed, the samples have much higher capacitance, revealing that the intermediate band is formed. The capacitance increasing is due to the big amount of charge trapped at the intermediate band, even at low temperatures. Ti deep levels have been measured by admittance spectroscopy. These deep levels are located at energies which vary from 0.20 to 0.28?eV below the conduction band for implantation doses in the range 1013-1014 at./cm2. For doses over the Mott limit, the implanted atoms become nonrecombinant. Capacitance voltage transient technique measurements prove that the fabricated devices consist of two-layers, in which the implanted layer and the substrate behave as an n+/n junction.
Resumo:
Differential Phase Shift Keying (DPSK) modulation format has been shown as a robust solution for next-generation optical transmission systems. One key device enabling such systems is the delay interferometer, converting the signal phase information into intensity modulation to be detected by the photodiodes. Usually, Mach-Zehnder interferometer (MZI) is used for demodulating DPSK signals. In this paper, we developed an MZI which is based on all-fiber Multimode Interference (MI) structure: a multimode fiber (MMF) located between two single-mode fibers (SMF) without any transition zones. The standard MZI is not very stable since the two beams go through two different paths before they recombine. In our design the two arms of the MZI are in the same fiber, which will make it less temperature-sensitive than the standard MZI. Performance of such MZI will be analyzed from transmission spectrum. Finally such all-fiber MI-based MZI (MI-MZI) is used to demodulate 10 Gbps DPSK signals. The demodulated signals are analyzed from eye diagram and bit error rate (BER).
Resumo:
Detectors designing is a key aspect for the development of the new millimeter wave systems. In this paper two detectors in microstrip technology are presented. They use zero bias Schottky diodes to detect signals from low frequency to 40 GHz. High sensibility, flat frequency response and ultrabroadband are the main features of these designs. They are also cheap and easy to mount because they have been built using microstrip technology. This paper explains most technological questions which must be taken into account to design such detectors.