11 resultados para SCALE-FREE
em Universidad Politécnica de Madrid
Resumo:
This paper presents an algorithm for generating scale-free networks with adjustable clustering coefficient. The algorithm is based on a random walk procedure combined with a triangle generation scheme which takes into account genetic factors; this way, preferential attachment and clustering control are implemented using only local information. Simulations are presented which support the validity of the scheme, characterizing its tuning capabilities.
Resumo:
In fact, much of the attraction of network theory initially stemmed from the fact that many networks seem to exhibit some sort of universality, as most of them belong to one of three classes: random, scale-free and small-world networks. Structural properties have been shown to translate into different important properties of a given system, including efficiency, speed of information processing, vulnerability to various forms of stress, and robustness. For example, scale-free and random topologies were shown to be...
Resumo:
We study the notion of approximate entropy within the framework of network theory. Approximate entropy is an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer genomics are finally considered in the light of both approaches.
Resumo:
A detailed macroscopic description as in continuum mechanics, and just the concept of microstate,have been used to derive thermodynamics from mechanics. In opposition to statistical physics, the derivation lays emphasis on a definite prescription for macrostates (and non-equilibrium entropy), and uses basic features of the macrostate concept: complementary descriptions, involving either conservative and additive quantities or densities;scale-free character; reference to finite velocities and regions distant in space, thus introducing time indirectly. On the other hand, the derivation keeps the particle substratum (limit of number of particles N taken at fixed densities), and makes no ergodic-type considerations.
Resumo:
Durante la actividad diaria, la sociedad actual interactúa constantemente por medio de dispositivos electrónicos y servicios de telecomunicaciones, tales como el teléfono, correo electrónico, transacciones bancarias o redes sociales de Internet. Sin saberlo, masivamente dejamos rastros de nuestra actividad en las bases de datos de empresas proveedoras de servicios. Estas nuevas fuentes de datos tienen las dimensiones necesarias para que se puedan observar patrones de comportamiento humano a grandes escalas. Como resultado, ha surgido una reciente explosión sin precedentes de estudios de sistemas sociales, dirigidos por el análisis de datos y procesos computacionales. En esta tesis desarrollamos métodos computacionales y matemáticos para analizar sistemas sociales por medio del estudio combinado de datos derivados de la actividad humana y la teoría de redes complejas. Nuestro objetivo es caracterizar y entender los sistemas emergentes de interacciones sociales en los nuevos espacios tecnológicos, tales como la red social Twitter y la telefonía móvil. Analizamos los sistemas por medio de la construcción de redes complejas y series temporales, estudiando su estructura, funcionamiento y evolución en el tiempo. También, investigamos la naturaleza de los patrones observados por medio de los mecanismos que rigen las interacciones entre individuos, así como medimos el impacto de eventos críticos en el comportamiento del sistema. Para ello, hemos propuesto modelos que explican las estructuras globales y la dinámica emergente con que fluye la información en el sistema. Para los estudios de la red social Twitter, hemos basado nuestros análisis en conversaciones puntuales, tales como protestas políticas, grandes acontecimientos o procesos electorales. A partir de los mensajes de las conversaciones, identificamos a los usuarios que participan y construimos redes de interacciones entre los mismos. Específicamente, construimos una red para representar quién recibe los mensajes de quién y otra red para representar quién propaga los mensajes de quién. En general, hemos encontrado que estas estructuras tienen propiedades complejas, tales como crecimiento explosivo y distribuciones de grado libres de escala. En base a la topología de estas redes, hemos indentificado tres tipos de usuarios que determinan el flujo de información según su actividad e influencia. Para medir la influencia de los usuarios en las conversaciones, hemos introducido una nueva medida llamada eficiencia de usuario. La eficiencia se define como el número de retransmisiones obtenidas por mensaje enviado, y mide los efectos que tienen los esfuerzos individuales sobre la reacción colectiva. Hemos observado que la distribución de esta propiedad es ubicua en varias conversaciones de Twitter, sin importar sus dimensiones ni contextos. Con lo cual, sugerimos que existe universalidad en la relación entre esfuerzos individuales y reacciones colectivas en Twitter. Para explicar los factores que determinan la emergencia de la distribución de eficiencia, hemos desarrollado un modelo computacional que simula la propagación de mensajes en la red social de Twitter, basado en el mecanismo de cascadas independientes. Este modelo nos permite medir el efecto que tienen sobre la distribución de eficiencia, tanto la topología de la red social subyacente, como la forma en que los usuarios envían mensajes. Los resultados indican que la emergencia de un grupo selecto de usuarios altamente eficientes depende de la heterogeneidad de la red subyacente y no del comportamiento individual. Por otro lado, hemos desarrollado técnicas para inferir el grado de polarización política en redes sociales. Proponemos una metodología para estimar opiniones en redes sociales y medir el grado de polarización en las opiniones obtenidas. Hemos diseñado un modelo donde estudiamos el efecto que tiene la opinión de un pequeño grupo de usuarios influyentes, llamado élite, sobre las opiniones de la mayoría de usuarios. El modelo da como resultado una distribución de opiniones sobre la cual medimos el grado de polarización. Aplicamos nuestra metodología para medir la polarización en redes de difusión de mensajes, durante una conversación en Twitter de una sociedad políticamente polarizada. Los resultados obtenidos presentan una alta correspondencia con los datos offline. Con este estudio, hemos demostrado que la metodología propuesta es capaz de determinar diferentes grados de polarización dependiendo de la estructura de la red. Finalmente, hemos estudiado el comportamiento humano a partir de datos de telefonía móvil. Por una parte, hemos caracterizado el impacto que tienen desastres naturales, como innundaciones, sobre el comportamiento colectivo. Encontramos que los patrones de comunicación se alteran de forma abrupta en las áreas afectadas por la catástofre. Con lo cual, demostramos que se podría medir el impacto en la región casi en tiempo real y sin necesidad de desplegar esfuerzos en el terreno. Por otra parte, hemos estudiado los patrones de actividad y movilidad humana para caracterizar las interacciones entre regiones de un país en desarrollo. Encontramos que las redes de llamadas y trayectorias humanas tienen estructuras de comunidades asociadas a regiones y centros urbanos. En resumen, hemos mostrado que es posible entender procesos sociales complejos por medio del análisis de datos de actividad humana y la teoría de redes complejas. A lo largo de la tesis, hemos comprobado que fenómenos sociales como la influencia, polarización política o reacción a eventos críticos quedan reflejados en los patrones estructurales y dinámicos que presentan la redes construidas a partir de datos de conversaciones en redes sociales de Internet o telefonía móvil. ABSTRACT During daily routines, we are constantly interacting with electronic devices and telecommunication services. Unconsciously, we are massively leaving traces of our activity in the service providers’ databases. These new data sources have the dimensions required to enable the observation of human behavioral patterns at large scales. As a result, there has been an unprecedented explosion of data-driven social research. In this thesis, we develop computational and mathematical methods to analyze social systems by means of the combined study of human activity data and the theory of complex networks. Our goal is to characterize and understand the emergent systems from human interactions on the new technological spaces, such as the online social network Twitter and mobile phones. We analyze systems by means of the construction of complex networks and temporal series, studying their structure, functioning and temporal evolution. We also investigate on the nature of the observed patterns, by means of the mechanisms that rule the interactions among individuals, as well as on the impact of critical events on the system’s behavior. For this purpose, we have proposed models that explain the global structures and the emergent dynamics of information flow in the system. In the studies of the online social network Twitter, we have based our analysis on specific conversations, such as political protests, important announcements and electoral processes. From the messages related to the conversations, we identify the participant users and build networks of interactions with them. We specifically build one network to represent whoreceives- whose-messages and another to represent who-propagates-whose-messages. In general, we have found that these structures have complex properties, such as explosive growth and scale-free degree distributions. Based on the topological properties of these networks, we have identified three types of user behavior that determine the information flow dynamics due to their influence. In order to measure the users’ influence on the conversations, we have introduced a new measure called user efficiency. It is defined as the number of retransmissions obtained by message posted, and it measures the effects of the individual activity on the collective reacixtions. We have observed that the probability distribution of this property is ubiquitous across several Twitter conversation, regardlessly of their dimension or social context. Therefore, we suggest that there is a universal behavior in the relationship between individual efforts and collective reactions on Twitter. In order to explain the different factors that determine the user efficiency distribution, we have developed a computational model to simulate the diffusion of messages on Twitter, based on the mechanism of independent cascades. This model, allows us to measure the impact on the emergent efficiency distribution of the underlying network topology, as well as the way that users post messages. The results indicate that the emergence of an exclusive group of highly efficient users depends upon the heterogeneity of the underlying network instead of the individual behavior. Moreover, we have also developed techniques to infer the degree of polarization in social networks. We propose a methodology to estimate opinions in social networks and to measure the degree of polarization in the obtained opinions. We have designed a model to study the effects of the opinions of a small group of influential users, called elite, on the opinions of the majority of users. The model results in an opinions distribution to which we measure the degree of polarization. We apply our methodology to measure the polarization on graphs from the messages diffusion process, during a conversation on Twitter from a polarized society. The results are in very good agreement with offline and contextual data. With this study, we have shown that our methodology is capable of detecting several degrees of polarization depending on the structure of the networks. Finally, we have also inferred the human behavior from mobile phones’ data. On the one hand, we have characterized the impact of natural disasters, like flooding, on the collective behavior. We found that the communication patterns are abruptly altered in the areas affected by the catastrophe. Therefore, we demonstrate that we could measure the impact of the disaster on the region, almost in real-time and without needing to deploy further efforts. On the other hand, we have studied human activity and mobility patterns in order to characterize regional interactions on a developing country. We found that the calls and trajectories networks present community structure associated to regional and urban areas. In summary, we have shown that it is possible to understand complex social processes by means of analyzing human activity data and the theory of complex networks. Along the thesis, we have demonstrated that social phenomena, like influence, polarization and reaction to critical events, are reflected in the structural and dynamical patterns of the networks constructed from data regarding conversations on online social networks and mobile phones.
Resumo:
Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.
Resumo:
Canonical test cases for sloshing wave impact problems are pre-sented and discussed. In these cases the experimental setup has been simpli?ed seeking the highest feasible repeatability; a rectangular tank subjected to harmonic roll motion has been the tested con?guration. Both lateral and roof impacts have been studied, since both cases are relevant in sloshing assessment and show speci?c dynamics. An analysis of the impact pressure of the ?rst four impact events is provided in all cases. It has been found that not in all cases a Gaussian ?tting of each individual peak is feasible. The tests have been conducted with both water and oil in order to obtain high and moderate Reynolds number data; the latter may be useful as simpler test cases to assess the capabilities of CFD codes in simulating sloshing impacts. The re-peatability of impact pressure values increases dramatically when using oil. In addition, a study of the two-dimensionality of the problem using a tank con?guration that can be adjusted to 4 di?erent thicknesses has been carried out. Though the kinemat-ics of the free surface does not change signi cantly in some of the cases, the impact pressure values of the ?rst impact events changes substantially from the small to the large aspect ratios thus meaning that attention has to be paid to this issue when reference data is used for validation of 2D and 3D CFD codes.
Resumo:
This paper describes the main goals and outcomes of the EU-funded Framework 7 project entitled Semantic Evaluation at Large Scale (SEALS). The growth and success of the Semantic Web is built upon a wide range of Semantic technologies from ontology engineering tools through to semantic web service discovery and semantic search. The evaluation of such technologies ? and, indeed, assessments of their mutual compatibility ? is critical for their sustained improvement and adoption. The SEALS project is creating an open and sustainable platform on which all aspects of an evaluation can be hosted and executed and has been designed to accommodate most technology types. It is envisaged that the platform will become the de facto repository of test datasets and will allow anyone to organise, execute and store the results of technology evaluations free of charge and without corporate bias. The demonstration will show how individual tools can be prepared for evaluation, uploaded to the platform, evaluated according to some criteria and the subsequent results viewed. In addition, the demonstration will show the flexibility and power of the SEALS Platform for evaluation organisers by highlighting some of the key technologies used.
Resumo:
This paper analyzes the correlation between the fluctuations of the electrical power generated by the ensemble of 70 DC/AC inverters from a 45.6 MW PV plant. The use of real electrical power time series from a large collection of photovoltaic inverters of a same plant is an impor- tant contribution in the context of models built upon simplified assumptions to overcome the absence of such data. This data set is divided into three different fluctuation categories with a clustering proce- dure which performs correctly with the clearness index and the wavelet variances. Afterwards, the time dependent correlation between the electrical power time series of the inverters is esti- mated with the wavelet transform. The wavelet correlation depends on the distance between the inverters, the wavelet time scales and the daily fluctuation level. Correlation values for time scales below one minute are low without dependence on the daily fluctuation level. For time scales above 20 minutes, positive high correlation values are obtained, and the decay rate with the distance depends on the daily fluctuation level. At intermediate time scales the correlation depends strongly on the daily fluctuation level. The proposed methods have been implemented using free software. Source code is available as supplementary material.
Resumo:
La inmensa mayoría de los flujos de relevancia ingenieril permanecen sin estudiar en el marco de la teoría de estabilidad global. Esto es debido a dos razones fundamentalmente, las dificultades asociadas con el análisis de los flujos turbulentos y los inmensos recursos computacionales requeridos para obtener la solución del problema de autovalores asociado al análisis de inestabilidad de flujos tridimensionales, también conocido como problema TriGlobal. En esta tesis se aborda el problema asociado con la tridimensionalidad. Se ha desarrollado una metodología general para obtener soluciones de problemas de análisis modal de las inestabilidades lineales globales mediante el acoplamiento de métodos de evolución temporal, desarrollados en este trabajo, con códigos de mecánica de fluidos computacional de segundo orden, utilizados de forma general en la industria. Esta metodología consiste en la resolución del problema de autovalores asociado al análisis de inestabilidad mediante métodos de proyección en subespacios de Krylov, con la particularidad de que dichos subespacios son generados por medio de la integración temporal de un vector inicial usando cualquier código de mecánica de fluidos computacional. Se han elegido tres problemas desafiantes en función de la exigencia de recursos computacionales necesarios y de la complejidad física para la demostración de la presente metodología: (i) el flujo en el interior de una cavidad tridimensional impulsada por una de sus tapas, (ii) el flujo alrededor de un cilindro equipado con aletas helicoidales a lo largo su envergadura y (iii) el flujo a través de una cavidad abierta tridimensinal en ausencia de homogeneidades espaciales. Para la validación de la tecnología se ha obtenido la solución del problema TriGlobal asociado al flujo en la cavidad tridimensional, utilizando el método de evolución temporal desarrollado acoplado con los operadores numéricos de flujo incompresible del código CFD OpenFOAM (código libre). Los resultados obtenidos coinciden plentamente con la literatura. La aplicación de esta metodología al estudio de inestabilidades globales de flujos abiertos tridimensionales ha proporcionado por primera vez, información sobre la transición tridimensional de estos flujos. Además, la metodología ha sido adaptada para resolver problemas adjuntos TriGlobales, permitiendo el control de flujo basado en modificaciones de las inestabilidades globales. Finalmente, se ha demostrado que la cantidad moderada de los recursos computacionales requeridos para la solución del problema de valor propio TriGlobal usando este método numérico, junto a su versatilidad al poder acoplarse a cualquier código aerodinámico, permite la realización de análisis de inestabilidad global y control de flujos complejos de relevancia industrial. Abstract Most flows of engineering relevance still remain unexplored in a global instability theory context for two reasons. First, because of the difficulties associated with the analysis of turbulent flows and, second, for the formidable computational resources required for the solution of the eigenvalue problem associated with the instability analysis of three-dimensional base flows, also known as TriGlobal problem. In this thesis, the problem associated with the three-dimensionality is addressed by means of the development of a general approach to the solution of large-scale global linear instability analysis by coupling a time-stepping approach with second order aerodynamic codes employed in industry. Three challenging flows in the terms of required computational resources and physical complexity have been chosen for demonstration of the present methodology; (i) the flow inside a wall-bounded three-dimensional lid-driven cavity, (ii) the flow past a cylinder fitted with helical strakes and (iii) the flow over a inhomogeneous three-dimensional open cavity. Results in excellent agreement with the literature have been obtained for the three-dimensional lid-driven cavity by using this methodology coupled with the incompressible solver of the open-source toolbox OpenFOAM®, which has served as validation. Moreover, significant physical insight of the instability of three-dimensional open flows has been gained through the application of the present time-stepping methodology to the other two cases. In addition, modifications to the present approach have been proposed in order to perform adjoint instability analysis of three-dimensional base flows and flow control; validation and TriGlobal examples are presented. Finally, it has been demonstrated that the moderate amount of computational resources required for the solution of the TriGlobal eigenvalue problem using this method enables the performance of instability analysis and control of flows of industrial relevance.
Resumo:
The characteristics of turbulent/nonturbulent interfaces (TNTI) from boundary layers, jets and shear-free turbulence are compared using direct numerical simulations. The TNTI location is detected by assessing the volume of turbulent flow as function of the vorticity magnitude and is shown to be equivalent to other procedures using a scalar field. Vorticity maps show that the boundary layer contains a larger range of scales at the interface than in jets and shear-free turbulence where the change in vorticity characteristics across the TNTI is much more dramatic. The intermittency parameter shows that the extent of the intermittency region for jets and boundary layers is similar and is much bigger than in shear-free turbulence, and can be used to compute the vorticity threshold defining the TNTI location. The statistics of the vorticity jump across the TNTI exhibit the imprint of a large range of scales, from the Kolmogorov micro-scale to scales much bigger than the Taylor scale. Finally, it is shown that contrary to the classical view, the low-vorticity spots inside the jet are statistically similar to isotropic turbulence, suggesting that engulfing pockets simply do not exist in jets