39 resultados para Rule-based techniques
em Universidad Politécnica de Madrid
Resumo:
This paper discusses a novel hybrid approach for text categorization that combines a machine learning algorithm, which provides a base model trained with a labeled corpus, with a rule-based expert system, which is used to improve the results provided by the previous classifier, by filtering false positives and dealing with false negatives. The main advantage is that the system can be easily fine-tuned by adding specific rules for those noisy or conflicting categories that have not been successfully trained. We also describe an implementation based on k-Nearest Neighbor and a simple rule language to express lists of positive, negative and relevant (multiword) terms appearing in the input text. The system is evaluated in several scenarios, including the popular Reuters-21578 news corpus for comparison to other approaches, and categorization using IPTC metadata, EUROVOC thesaurus and others. Results show that this approach achieves a precision that is comparable to top ranked methods, with the added value that it does not require a demanding human expert workload to train
Resumo:
Una de las principales causas del ruido en nuestras ciudades es el tráfico rodado. El ruido generado por los vehículos no es sólo debido al motor, sino que existen diversas fuentes de ruido en los mismos, entre las que se puede destacar el ruido de rodadura. Para localizar las causas del ruido e identificar las principales fuentes del mismo se han utilizado en diversos estudios las técnicas de coherencia y las técnicas basadas en arrays. Sin embargo, en la bibliografía existente, no es habitual encontrar el uso de estas técnicas en el sector automovilístico. En esta tesis se parte de la premisa de la posibilidad de usar estas técnicas de medida en coches, para demostrar a la largo de la misma su factibilidad y su bondad para evaluar las fuentes de ruido en dos condiciones distintas: cuando el coche está parado y cuando está en movimiento. Como técnica de coherencia se elige la de Intensidad Selectiva, utilizándose la misma para evaluar la coherencia existente entre el ruido que llega a los oídos del conductor y la intensidad radiada por distintos puntos del motor. Para la localización de fuentes de ruido, las técnicas basadas en array son las que mejores resultados ofrecen. Statistically Optimized Near-field Acoustical Holography (SONAH) es la técnica elegida para la localización y caracterización de las fuentes de ruido en el motor a baja frecuencia. En cambio, Beamforming es la técnica seleccionada para el caso de media-alta frecuencia y para la evaluación de las fuentes de ruido cuando el coche se encuentra en movimiento. Las técnicas propuestas no sólo pueden utilizarse en medidas reales, sino que además proporcionan abundante información y frecen una gran versatilidad a la hora de caracterizar fuentes de ruido. ABSTRACT One of the most important noise causes in our cities is the traffic. The noise generated by the vehicles is not only due to the engine, but there are some other noise sources. Among them the tyre/road noise can be highlighted. Coherence and array based techniques have been used in some research to locate the noise causes and identify the main noise sources. Nevertheless, it is not usual in the literature to find the application of this kind of techniques in the car sector. This Thesis starts taking into account the possibility of using this kind of measurement techniques in cars, to demonstrate their feasability and their quality to evaluate the noise sources under two different conditions: when the car is stopped and when it is in movement. Selective Intensity was chosen as coherence technique, evaluating the coherence between the noise in the driver’s ears and the intensity radiated in different points of the engine. Array based techniques carry out the best results to noise source location. Statistically Optimized Near-field Acoustical Holography (SONAH) is the measurement technique chosen for noise source location and characterization in the engine at low frequency. On the other hand, Beamforming is the technique chosen in the case of medium-high frequency and to characterize the noise sources when the car is in movement. The proposed techniques not only can be used in actual measurements, but also provide a lot of information and are very versatile to noise source characterization.
Resumo:
Objective: This study assessed the efficacy of a closed-loop (CL) system consisting of a predictive rule-based algorithm (pRBA) on achieving nocturnal and postprandial normoglycemia in patients with type 1 diabetes mellitus (T1DM). The algorithm is personalized for each patient’s data using two different strategies to control nocturnal and postprandial periods. Research Design and Methods: We performed a randomized crossover clinical study in which 10 T1DM patients treated with continuous subcutaneous insulin infusion (CSII) spent two nonconsecutive nights in the research facility: one with their usual CSII pattern (open-loop [OL]) and one controlled by the pRBA (CL). The CL period lasted from 10 p.m. to 10 a.m., including overnight control, and control of breakfast. Venous samples for blood glucose (BG) measurement were collected every 20 min. Results: Time spent in normoglycemia (BG, 3.9–8.0 mmol/L) during the nocturnal period (12 a.m.–8 a.m.), expressed as median (interquartile range), increased from 66.6% (8.3–75%) with OL to 95.8% (73–100%) using the CL algorithm (P<0.05). Median time in hypoglycemia (BG, <3.9 mmol/L) was reduced from 4.2% (0–21%) in the OL night to 0.0% (0.0–0.0%) in the CL night (P<0.05). Nine hypoglycemic events (<3.9 mmol/L) were recorded with OL compared with one using CL. The postprandial glycemic excursion was not lower when the CL system was used in comparison with conventional preprandial bolus: time in target (3.9–10.0 mmol/L) 58.3% (29.1–87.5%) versus 50.0% (50–100%). Conclusions: A highly precise personalized pRBA obtains nocturnal normoglycemia, without significant hypoglycemia, in T1DM patients. There appears to be no clear benefit of CL over prandial bolus on the postprandial glycemia
Resumo:
Type 1 diabetes-mellitus implies a life-threatening absolute insulin deficiency. Artificial pancreas (CGM sensor, insulin pump and control algorithm) is promising to outperform current open-loop therapies.
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
In computer science, different types of reusable components for building software applications were proposed as a direct consequence of the emergence of new software programming paradigms. The success of these components for building applications depends on factors such as the flexibility in their combination or the facility for their selection in centralised or distributed environments such as internet. In this article, we propose a general type of reusable component, called primitive of representation, inspired by a knowledge-based approach that can promote reusability. The proposal can be understood as a generalisation of existing partial solutions that is applicable to both software and knowledge engineering for the development of hybrid applications that integrate conventional and knowledge based techniques. The article presents the structure and use of the component and describes our recent experience in the development of real-world applications based on this approach.
Resumo:
The most successful unfolding rules used nowadays in the partial evaluation of logic programs are based on well quasi orders (wqo) applied over (covering) ancestors, i.e., a subsequence of the atoms selected during a derivation. Ancestor (sub)sequences are used to increase the specialization power of unfolding while still guaranteeing termination and also to reduce the number of atoms for which the wqo has to be checked. Unfortunately, maintaining the structure of the ancestor relation during unfolding introduces significant overhead. We propose an efficient, practical local unfolding rule based on the notion of covering ancestors which can be used in combination with a wqo and allows a stack-based implementation without losing any opportunities for specialization. Using our technique, certain non-leftmost unfoldings are allowed as long as local unfolding is performed, i.e., we cover depth-first strategies. To deal with practical programs, we propose assertion-based techniques which allow our approach to treat programs that include (Prolog) built-ins and external predicates in a very extensible manner, for the case of leftmost unfolding. Finally, we report on our mplementation of these techniques embedded in a practical partial evaluator, which shows that our techniques, in addition to dealing with practical programs, are also significantly more efficient in time and somewhat more efficient in memory than traditional tree-based implementations. To appear in Theory and Practice of Logic Programming (TPLP).
Resumo:
The integration of powerful partial evaluation methods into practical compilers for logic programs is still far from reality. This is related both to 1) efficiency issues and to 2) the complications of dealing with practical programs. Regarding efnciency, the most successful unfolding rules used nowadays are based on structural orders applied over (covering) ancestors, i.e., a subsequence of the atoms selected during a derivation. Unfortunately, maintaining the structure of the ancestor relation during unfolding introduces significant overhead. We propose an efficient, practical local unfolding rule based on the notion of covering ancestors which can be used in combination with any structural order and allows a stack-based implementation without losing any opportunities for specialization. Regarding the second issue, we propose assertion-based techniques which allow our approach to deal with real programs that include (Prolog) built-ins and external predicates in a very extensible manner. Finally, we report on our implementation of these techniques in a practical partial evaluator, embedded in a state of the art compiler which uses global analysis extensively (the Ciao compiler and, specifically, its preprocessor CiaoPP). The performance analysis of the resulting system shows that our techniques, in addition to dealing with practical programs, are also significantly more efficient in time and somewhat more efficient in memory than traditional tree-based implementations.
Resumo:
This work describes a semantic extension for a user-smart object interaction model based on the ECA paradigm (Event-Condition-Action). In this approach, smart objects publish their sensing (event) and action capabilities in the cloud and mobile devices are prepared to retrieve them and act as mediators to configure personalized behaviours for the objects. In this paper, the information handled by this interaction system has been shaped according several semantic models that, together with the integration of an embedded ontological and rule-based reasoner, are exploited in order to (i) automatically detect incompatible ECA rules configurations and to (ii) support complex ECA rules definitions and execution. This semantic extension may significantly improve the management of smart spaces populated with numerous smart objects from mobile personal devices, as it facilitates the configuration of coherent ECA rules.
Resumo:
Shopping agents are web-based applications that help consumers to find appropriate products in the context of e-commerce. In this paper we argue about the utility of advanced model-based techniques that recently have been proposed in the fields of Artificial Intelligence and Knowledge Engineering, in order to increase the level of support provided by this type of applications. We illustrate this approach with a virtual sales assistant that dynamically configures a product according to the needs and preferences of customers.
Resumo:
This paper argues about the utility of advanced knowledge-based techniques to develop web-based applications that help consumers in finding products within marketplaces in e-commerce. In particular, we describe the idea of model-based approach to develop a shopping agent that dynamically configures a product according to the needs and preferences of customers. Finally, the paper summarizes the advantages provided by this approach.
Resumo:
Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications—it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ‘Activity Monitor’ has been designed and implemented: a personal health-persuasive application that provides feedback on the user’s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user’s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.d
Resumo:
This paper describes the development of an Advanced Speech Communication System for Deaf People and its field evaluation in a real application domain: the renewal of Driver’s License. The system is composed of two modules. The first one is a Spanish into Spanish Sign Language (LSE: Lengua de Signos Española) translation module made up of a speech recognizer, a natural language translator (for converting a word sequence into a sequence of signs), and a 3D avatar animation module (for playing back the signs). The second module is a Spoken Spanish generator from sign-writing composed of a visual interface (for specifying a sequence of signs), a language translator (for generating the sequence of words in Spanish), and finally, a text to speech converter. For language translation, the system integrates three technologies: an example-based strategy, a rule-based translation method and a statistical translator. This paper also includes a detailed description of the evaluation carried out in the Local Traffic Office in the city of Toledo (Spain) involving real government employees and deaf people. This evaluation includes objective measurements from the system and subjective information from questionnaires. Finally, the paper reports an analysis of the main problems and a discussion about possible solutions.
Resumo:
This paper describes a novel method to enhance current airport surveillance systems used in Advanced Surveillance Monitoring Guidance and Control Systems (A-SMGCS). The proposed method allows for the automatic calibration of measurement models and enhanced detection of nonideal situations, increasing surveillance products integrity. It is based on the definition of a set of observables from the surveillance processing chain and a rule based expert system aimed to change the data processing methods
Resumo:
Molecular beam epitaxy growth of ten-period lattice-matched InAlN/GaN distributed Bragg reflectors (DBRs) with peak reflectivity centered around 400nm is reported including optical and transmission electron microscopy (TEM) measurements [1]. Good periodicity heterostructures with crack-free surfaces were confirmed, but, also a significant residual optical absorption below the bandgap was measured. The TEM characterization ascribes the origin of this problem to polymorfism and planar defects in the GaN layers and to the existence of an In-rich layer at the InAlN/GaN interfaces. In this work, several TEM based techniques have been combined.