12 resultados para Rotating Inertia.

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the evolution of a viscous fluid drop rotating about a fixed axis at constant angular velocity $Omega$ or constant angular momentum L surrounded by another viscous fluid. The problem is considered in the limit of large Ekman number and small Reynolds number. The analysis is carried out by combining asymptotic analysis and full numerical simulation by means of the boundary element method. We pay special attention to the stability/instability of equilibrium shapes and the possible formation of singularities representing a change in the topology of the fluid domain. When the evolution is at constant $Omega$, depending on its value, drops can take the form of a flat film whose thickness goes to zero in finite time or an elongated filament that extends indefinitely. When evolution takes place at constant L and axial symmetry is imposed, thin films surrounded by a toroidal rim can develop, but the film thickness does not vanish in finite time. When axial symmetry is not imposed and L is sufficiently large, drops break axial symmetry and, depending on the value of L, reach an equilibrium configuration with a 2-fold symmetry or break up into several drops with a 2- or 3-fold symmetry. The mechanism of breakup is also described

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this contribution we simulate numerically the evolution of a viscous fluid drop rotating about a fixed axis at constant angular velocity ? or constant angular momentum L, surrounded by another viscous fluid. The problem is considered in the limit of large Ekman number and small Reynolds number. In the lecture we will describe the numerical method we have used to solve the PDE system that describes the evolution of the drop (3D boundary element method). We will also present the results we have obtained, paying special attention to the stability/instability of the equilibrium shapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previous axisymmetric model of the supersonic expansion of a collisionless, hot plasma in a divergent magnetic nozzle is extended here in order to include electron-inertia effects. Up to dominant order on all components of the electron velocity, electron momentum equations still reduce to three conservation laws. Electron inertia leads to outward electron separation from the magnetic streamtubes. The progressive plasma filling of the adjacent vacuum region is consistent with electron-inertia being part of finite electron Larmor radius effects, which increase downstream and eventually demagnetize the plasma. Current ambipolarity is not fulfilled and ion separation can be either outwards or inwards of magnetic streamtubes, depending on their magnetization. Electron separation penalizes slightly the plume efficiency and is larger for plasma beams injected with large pressure gradients. An alternative nonzero electron-inertia model [E. Hooper, J. Propul. Power 9, 757 (1993)] based on cold plasmas and current ambipolarity, which predicts inwards electron separation, is discussed critically. A possible competition of the gyroviscous force with electron-inertia effects is commented briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a model equation that mimics convection under rotation in a fluid with temperature- dependent properties (non-Boussinesq (NB)), high Prandtl number and idealized boundary conditions. It is based on a model equation proposed by Segel [1965] by adding rotation terms that lead to a Kuppers-Lortz instability [Kuppers & Lortz, 1969] and can develop into oscillating hexagons. We perform a weakly nonlinear analysis to find out explicitly the coefficients in the amplitude equation as functions of the rotation rate. These equations describe hexagons and os- cillating hexagons quite well, and include the Busse?Heikes (BH) model [Busse & Heikes, 1980] as a particular case. The sideband instabilities as well as short wavelength instabilities of such hexagonal patterns are discussed and the threshold for oscillating hexagons is determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non- Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscil- lations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a semi-analytic formulation that permits to study the long-term dynamics of fast-rotating inert tethers around planetary satellites. Since space tethers are extensive bodies they generate non-keplerian gravitational forces which depend solely on their mass geometry and attitude, that can be exploited for controlling science orbits. We conclude that rotating tethers modify the geometry of frozen orbits, allowing for lower eccentricity frozen orbits for a wide range of orbital inclination, where the length of the tether becomes a new parameter that the mission analyst may use to shape frozen orbits to tighter operational constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ESS-Bilbao facility, hosted by the University of the Basque Country (UPV/EHU), envisages the operation of a high-current proton accelerator delivering beams with energies up to 50 MeV. The time-averaged proton current will be 2.25 mA, delivered by 1.5 ms proton pulses with a repetition rate of 20 Hz. This beam will feed a neutron source based upon the Be (p,n) reaction, which will enable the provision of relevant neutron experimentation capabilities. The neutron source baseline concept consists in a rotating beryllium target cooled by water. The target structure will comprise a rotatable disk made of 6061-T6 aluminium alloy holding 20 beryllium plates. Heat dissipation from the target relies upon a distribution of coolant-flow channels. The practical implementation of such a concept is here described with emphasis put on the beryllium plates thermo-mechanical optimization, the chosen coolant distribution system as well as the mechanical behavior of the assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calibration results of one anemometer equipped with several rotors, varying their size, were analyzed. In each case, the 30-pulses pert turn output signal of the anemometer was studied using Fourier series decomposition and correlated with the anemometer factor (i.e., the anemometer transfer function). Also, a 3-cup analytical model was correlated to the data resulting from the wind tunnel measurements. Results indicate good correlation between the post-processed output signal and the working condition of the cup anemometer. This correlation was also reflected in the results from the proposed analytical model. With the present work the possibility of remotely checking cup anemometer status, indicating the presence of anomalies and, therefore, a decrease on the wind sensor reliability is revealed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a semi-analytic formulation that enables the study of the long-term dynamics of fast-rotating inert tethers around planetary satellites. These equations take into account the coupling between the translational and rotational motion, which has a non-negligible impact on the dynamics, as the orbital motion of the tether center of mass strongly depends on the tether plane of rotation and its spin rate, and vice-versa. We use these governing equations to explore the effects of this coupling on the dynamics, the lifetime of frozen orbits and the precession of the plane of rotation of the tether.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El trabajo realizado en la presente tesis doctoral se debe considerar parte del proyecto UPMSat-2, que se enmarca dentro del ámbito de la tecnología aeroespacial. El UPMSat-2 es un microsatélite (de bajo coste y pequeño tamaño) diseñado, construido, probado e integrado por la Universidad Politécnica de Madrid (España), para fines de demostración tecnológica y educación. El objetivo de la presente tesis doctoral es presentar nuevos modelos analíticos para estudiar la interdependencia energética entre los subsistemas de potencia y de control de actitud de un satélite. En primer lugar, se estudia la simulación del subsistema de potencia de un microsatélite, prestando especial atención a la simulación de la fuente de potencia, esto es, los paneles solares. En la tesis se presentan métodos sencillos pero precisos para simular la producción de energía de los paneles en condiciones ambientales variables a través de su circuito equivalente. Los métodos propuestos para el cálculo de los parámetros del circuito equivalente son explícitos (o al menos, con las variables desacopladas), no iterativos y directos; no se necesitan iteraciones o valores iniciales para calcular los parámetros. La precisión de este método se prueba y se compara con métodos similares de la literatura disponible, demostrando una precisión similar para mayor simplicidad. En segundo lugar, se presenta la simulación del subsistema de control de actitud de un microsatélite, prestando especial atención a la nueva ley de control propuesta. La tesis presenta un nuevo tipo de control magnético es aplicable a la órbita baja terrestre (LEO). La ley de control propuesta es capaz de ajustar la velocidad de rotación del satélite alrededor de su eje principal de inercia máximo o mínimo. Además, en el caso de órbitas de alta inclinación, la ley de control favorece la alineación del eje de rotación con la dirección normal al plano orbital. El algoritmo de control propuesto es simple, sólo se requieren magnetopares como actuadores; sólo se requieren magnetómetros como sensores; no hace falta estimar la velocidad angular; no incluye un modelo de campo magnético de la Tierra; no tiene por qué ser externamente activado con información sobre las características orbitales y permite el rearme automático después de un apagado total del subsistema de control de actitud. La viabilidad teórica de la citada ley de control se demuestra a través de análisis de Monte Carlo. Por último, en términos de producción de energía, se demuestra que la actitud propuesto (en eje principal perpendicular al plano de la órbita, y el satélite que gira alrededor de ella con una velocidad controlada) es muy adecuado para la misión UPMSat-2, ya que permite una área superior de los paneles apuntando hacia el sol cuando se compara con otras actitudes estudiadas. En comparación con el control de actitud anterior propuesto para el UPMSat-2 resulta en un incremento de 25% en la potencia disponible. Además, la actitud propuesto mostró mejoras significativas, en comparación con otros, en términos de control térmico, como la tasa de rotación angular por satélite puede seleccionarse para conseguir una homogeneización de la temperatura más alta que apunta satélite y la antena. ABSTRACT The work carried out in the present doctoral dissertation should be considered part of the UPMSat-2 project, falling within the scope of the aerospace technology. The UPMSat-2 is a microsatellite (low cost and small size) designed, constructed integrated and tested for educational and technology demonstration purposes at the Universidad Politécnica de Madrid (Spain). The aim of the present doctoral dissertation is to present new analytical models to study the energy interdependence between the power and the attitude control subsystems of a satellite. First, the simulation of the power subsystem of a microsatellite is studied, paying particular attention to the simulation of the power supply, i.e. the solar panels. Simple but accurate methods for simulate the power production under variable ambient conditions using its equivalent circuit are presented. The proposed methods for calculate the equivalent circuit parameters are explicit (or at least, with decoupled variables), non-iterative and straight forward; no iterations or initial values for the parameters are needed. The accuracy of this method is tested and compared with similar methods from the available literature demonstrating similar precision but higher simplicity. Second, the simulation of the control subsystem of a microsatellite is presented, paying particular attention to the new control law proposed. A new type of magnetic control applied to Low Earth Orbit (LEO) satellites has been presented. The proposed control law is able to set the satellite rotation speed around its maximum or minimum inertia principal axis. Besides, the proposed control law favors the alignment of this axis with the normal direction to the orbital plane for high inclination orbits. The proposed control algorithm is simples, only magnetorquers are required as actuators; only magnetometers are required as sensors; no estimation of the angular velocity is needed; it does not include an in-orbit Earth magnetic field model; it does not need to be externally activated with information about the orbital characteristics and it allows automatic reset after a total shutdown of attitude control subsystem. The theoretical viability of the control law is demonstrated through Monte Carlo analysis. Finally, in terms of power production, it is demonstrated that the proposed attitude (on principal axis perpendicular to the orbit plane, and the satellite rotating around it with a controlled rate) is quite suitable for the UPMSat-2 mission, as it allows a higher area of the panels pointing towards the sun when compared to other studied attitudes. Compared with the previous attitude control proposed for the UPMSat-2 it results in a 25% increment in available power. Besides, the proposed attitude showed significant improvements, when compared to others, in terms of thermal control, as the satellite angular rotation rate can be selected to achieve a higher temperature homogenization of the satellite and antenna pointing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pararotor is a decelerator device based on the autorotation of a rotating wing. When it is dropped, it generates an aerodynamic force parallel to the main motion direction, acting as a decelerating force. In this paper, the rotational motion equations are shown for the vertical flight without any lateral wind component and some simplifying assumptions are introduced to obtain analytic solutions of the motion. First, the equilibrium state is obtained as a function of the main parameters. Then the equilibrium stability is analyzed. The motion stability depends on two nondimensional parameters, which contain geometric, inertia, and aerodynamic characteristics of the device. Based on these two parameters a stability diagram can be defined. Some stability regions with different types of stability trajectories (nodes, spirals, focuses) can be identified for spinning motion around axes close to the major, minor, and intermediate principal axes. It is found that the blades contribute to stability in a case of spin around the intermediate principal inertia axis, which is otherwise unstable. Subsequently, the equations for determining the angles of nutation and spin of the body are obtained, thus defining the orientation of the body for a stationary motion and the parameters on which that position depends.