9 resultados para Root-nodule Development
em Universidad Politécnica de Madrid
Resumo:
Lupinus mariae-josephae is a recently discovered endemism that is only found in alkaline-limed soils, a unique habitat for lupines, from a small area in Valencia region (Spain). In these soils, L. mariae-josephae grows in just a few defined patches, and previous conservation efforts directed towards controlled plant reproduction have been unsuccessful. We have previously shown that L. mariae-josephae plants establish a specific root nodule symbiosis with bradyrhizobia present in those soils, and we reasoned that the paucity of these bacteria in soils might contribute to the lack of success in reproducing plants for conservation purposes. Greenhouse experiments using L. mariae-josephae trap-plants showed the absence or near absence of L. mariae-josephae-nodulating bacteria in ‘‘terra rossa’’ soils of Valencia outside of L. mariaejosephae plant patches, and in other ‘‘terra rossa’’ or alkaline red soils of the Iberian Peninsula and Balearic Islands outside of the Valencia L. mariae-josephae endemism region. Among the bradyrhizobia able to establish an efficient symbiosis with L. mariae-josephae plants, two strains, LmjC and LmjM3 were selected as inoculum for seed coating. Two planting experiments were carried out in consecutive years under natural conditions in areas with edapho-climatic characteristics identical to those sustaining natural L. mariae-josephae populations, and successful reproduction of the plant was achieved. Interestingly, the successful reproductive cycle was absolutely dependent on seedling inoculation with effective bradyrhizobia, and optimal performance was observed in plants inoculated with LmjC, a strain that had previously shown the most efficient behavior under controlled conditions. Our results define conditions for L. mariae-josephae conservation and for extension to alkaline-limed soil habitats, where no other known lupine can thrive.
Resumo:
Rhizobium leguminosarum bv. viciae establishes root nodule symbioses with several legume genera. Although most isolates are equally effective in establishing symbioses with all host genera, previous evidence suggests that hosts select specific rhizobial genotypes among those present in the soil. We have used population genomics to further investigate this observation. P. sativum, L. culinaris, V. sativa, and V. faba plants were used to trap rhizobia from a well-characterized soil, and pooled genomic DNAs from one-hundred isolates from each plant were sequenced. Sequence reads were aligned to the R. leguminosarum bv. viciae 3841 reference genome. High overall conservation of sequences was observed in all subpopulations, although several multigenic regions were absent from the soil population. A large fraction (16-22%) of sequence reads could not be recruited to the reference genome, suggesting that they represent sequences specific to that particular soil population. Although highly conserved, the 16S-23S rRNA gene region presented single nucleotide polymorphisms (SNPs) regarding the reference genome, but no striking differences could be found among plant-selected subpopulations. Plant-specific SNP patterns were, however, clearly observed within the nod gene cluster, supporting the existence of a plant preference for specific rhizobial genotypes. This was also shown after genome-wide analysis of SNP patterns.
Resumo:
Legumes establish a root-nodule symbiosis with soil bacteria collectively known as rhizobia. This symbiosis allows legumes to benefit from the nitrogen fixation capabilities of rhizobia and thus to grow in the absence of any fixed nitrogen source. This is especially relevant for Agriculture, where intensive plant growth depletes soils of useable, fixed nitrogen sources. One of the main features of the root nodule symbiosis is its specificity. Different rhizobia are able to nodulate different legumes. Rhizobium leguminosarum bv. viciae is able to establish an effective symbiosis with four different plant genera (Pisum, Lens, Vicia, Lathyrus), and any given isolate will nodulate any of the four plant genera. A population genomics study with rhizobia isolated from P. sativum, L. culinaris, V. sativa or V. faba, all originating in the same soil, showed that plants select specific genotypes from those available in that soil. This was demonstrated at the genome-wide level, but also for specific genes. Accelerated mesocosm studies with successive plant cultures provided additional evidence on this plant selection and on the nature of the genotypes selected. Finally, representatives from the major rhizobial genotypes isolated from these plants allowed characterization of the size and nature of the respective pangenome and specific genome compartments. These were compared to the different genotypes ?symbiotic and non-symbiotic?present in rhizobial populations isolated directly from the soil without plant intervention.
Resumo:
Rhizobium leguminosarum bv viciae (Rlv) is a soil bacterium able to establish specific root-nodule symbioses with legumes of four different genera: Pisum, Vicia, Lens and Lathyrus. Rlv isolates from nodules of any of these legumes can nodulate any of them; however, it has been shown that plants select specific rhizobial genotypes from those present in the soil (1,2). We have previously shown this at the genomic level by following a population genomics approach. Pool genomic sequences from 100 isolates from each of four plant species: P. sativum, L. culinaris, V. faba and V. sativa, show different, specific profiles at the single nucleotide polymorphism (SNP) level for relevant genes. In this work, the extent of Rlv selection from a well-characterized soil population by different legume plant hosts: P. sativum, L. culinaris, V. faba and V. sativa, after a medium-term mesocosm study is described. Direct soil isolates from each of these mesocosm studies have been tested for specific rhizobial genes (glnII and fnrN) and symbiotic genes (nodC and nifH). Different populations were characterized further by Sanger sequencing of both the rpoB phylogenetic marker gene and the symbiotic genes nodC and nifH. The distribution and size of the rhizobial population for each legume host showed changes during the medium-term mesocosm study. Particularly, a non-symbiotic group of rhizobia was enriched by all four hosts, in contrast to the symbiotic rhizobia profile, which was specific for each legume plant host.
Resumo:
This article shows software that allows determining the statistical behavior of qualitative data originating surveys previously transformed with a Likert’s scale to quantitative data. The main intention is offer to users a useful tool to know statistics' characteristics and forecasts of financial risks in a fast and simple way. Additionally,this paper presents the definition of operational risk. On the other hand, the article explains different techniques to do surveys with a Likert’s scale (Avila, 2008) to know expert’s opinion with the transformation of qualitative data to quantitative data. In addition, this paper will show how is very easy to distinguish an expert’s opinion related to risk, but when users have a lot of surveys and matrices is very difficult to obtain results because is necessary to compare common data. On the other hand, statistical value representative must be extracted from common data to get weight of each risk. In the end, this article exposes the development of “Qualitative Operational Risk Software” or QORS by its acronym, which has been designed to determine the root of risks in organizations and its value at operational risk OpVaR (Jorion, 2008; Chernobai et al, 2008) when input data comes from expert’s opinion and their associated matrices.
Resumo:
To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also investigated. Analysis of initial spatial IAA distribution in the cuttings revealed that approximately 40 and 10% of the total IAA pool was present in the leaves and the stem base as rooting zone, respectively. A negative correlation existed between leaf size and IAA concentration. After excision of cuttings, IAA showed an early increase in the stem base with two peaks at 2 and 24h post excision and, thereafter, a decline to low levels. This was mirrored by the expression pattern of the auxin-responsive GH3 gene. NPA treatment completely suppressed the 24-h peak of IAA and severely inhibited root formation. It also reduced activities of cell wall and vacuolar invertases in the early phase of AR formation and inhibited the rise of activities of glucose-6-phosphate dehydrogenase and phosphofructokinase during later stages. We propose a model in which spontaneous AR formation in Petunia cuttings is dependent on PAT and on the resulting 24-h peak of IAA in the rooting zone, where it induces early cellular events and also stimulates sink establishment. Subsequent root development stimulates glycolysis and the pentosephosphate pathway
Resumo:
Root-knot nematodes (RKNs) induce giant cells (GCs) from root vascular cells inside the galls. Accompanying molecular changes as a function of infection time and across different species, and their functional impact, are still poorly understood. Thus, the transcriptomes of tomato galls and laser capture microdissected (LCM) GCs over the course of parasitism were compared with those of Arabidopsis, and functional analysis of a repressed gene was performed. Microarray hybridization with RNA from galls and LCM GCs, infection-reproduction tests and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) transcriptional profiles in susceptible and resistant (Mi-1) lines were performed in tomato. Tomato GC-induced genes include some possibly contributing to the epigenetic control of GC identity. GC-repressed genes are conserved between tomato and Arabidopsis, notably those involved in lignin deposition. However, genes related to the regulation of gene expression diverge, suggesting that diverse transcriptional regulators mediate common responses leading to GC formation in different plant species. TPX1, a cell wall peroxidase specifically involved in lignification, was strongly repressed in GCs/galls, but induced in a nearly isogenic Mi-1 resistant line on nematode infection. TPX1 overexpression in susceptible plants hindered nematode reproduction and GC expansion. Time-course and cross-species comparisons of gall and GC transcriptomes provide novel insights pointing to the relevance of gene repression during RKN establishment.
Resumo:
Biochar can provide multiple benefits in the ecosystem. However, the presence of phytotoxic compounds in some biochars is an important concern that needs to be addressed and that depends on the raw material and the pyrolysis conditions used in biochar production. For example, sewage sludge biochars can have elevated heavy metal con- tents as they were present in the feedstock and were enriched during pyrolysis. Also during carbonization, some phytotoxic compounds such as polycyclic aromatic hydrocarbons (PAHs), polyphenols or volatile organic com- pounds (VOCs) could be formed representing a risk of contamination to soils and crops. In this work we report the results from seed germination and plant development for three biochars prepared from wood, paper sludge plus wheat husks and sewage sludge. Five higher plant species (cress, lentils, cucumber, tomato and lettuce) were studied. Biochar from wood shows seed inhibition in several species and the paper sludge biochar on lettuce. For the rest, the effect on seed germination was positive. No inhibition of root growth was detected, but in some cases leaves and stems growth were inhibited. Our results are significant in terms of advancing or current understanding on the impacts of biochar on vegetative growth and linking those effects to biochar properties.
Resumo:
Auxin plays an important role in many aspects of plant development including stress responses. Here we briefly summarize how auxin is involved in salt stress, drought (i.e. mostly osmotic stress), waterlogging and nutrient deficiency in Brassica plants. In addition, some mechanisms to control auxin levels and signaling in relation to root formation (under stress) will be reviewed. Molecular studies are mainly described for the model plant Arabidopsis thaliana, but we also like to demonstrate how this knowledge can be transferred to agriculturally important Brassica species, such as Brassica rapa, Brassica napus and Brassica campestris. Moreover, beneficial fungi could play a role in the adaptation response of Brassica roots to abiotic stresses. Therefore, the possible influence of Piriformospora indica will also be covered since the growth promoting response of plants colonized by P. indica is also linked to plant hormones, among them auxin.